مقایسه دو روش کاهش تدریجی حجم تمرین پس از چهار هفته تمرین تخلیه گلیکوژنی بر عامل شبه رشدی-1 و استرسی مردان سالم غیرفعال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم ورزشی، دانشگاه قم، قم، ایران

2 کارشناسی ارشد، فیزیولوژی ورزشی، دانشگاه قم، قم، ایران.

3 مربی، گروه علوم ورزشی، دانشگاه قم، قم، ایران

10.22091/arsnes.2024.10404.1008

چکیده

هدف: هدف پژوهش حاضر بررسی تاثیر دو روش کاهش تدریجی حجم تمرین پس از چهار هفته تمرین تخلیه گلیکوژنی بر روی عامل رشدی و استرسی مردان سالم غیرفعال است.
روش: تحقیق حاضر از نوع نیمه‌تجربی با طرح پیش‌آزمون، پس‌آزمون با گروه کنترل است. جامعه آماری پژوهش شامل دانشجویان پسر سالم غیرفعال کارشناسی دانشگاه قم که واحد تربیت بدنی را أخذ کرده بودند، بوده که پس از فراخوان، تعداد 30 نفر دانشجوی پسر سالم که فعالیت ‌بدنی منظم نداشتند، انتخاب شده و به طور تصادفی در سه گروه مورد مطالعه قرار گرفتند. گروه اول: کاهش 50% حجم تمرین (11 نفر)؛ گروه دوم: کاهش 75% حجم تمرین (11 نفر)؛ و گروه سوم کنترل (8 نفر). متعاقب چهار هفته تمرین تخلیه گلیکوژنی، یک هفته تعدیل تمرین اجرا گردید. نمونه‌های خونی در سه مرحله در ابتدای شروع دوره پروتکل تمرینی و ۴۸ ساعت پس از آخرین جلسه تمرینی از سیاهرگ جلوی آرنج گرفته شد. برای ارزیابی غلظت سرمی IGF-1‌ و کراتین کیناز به ترتیب از تکنیک‌های الایزا‌ و ایمونورادیومتری استفاده شد. جهت بررسی تفاوت‌های بین‌ و درون‌‌گروهی از آزمون آنالیز واریانس با اندازه‌‌گیری‌‌های مکرر در سطح معناداری (05/0α =) استفاده گردید.
یافته‌ها: تفاوت معنی‌‌داری پس از دوره کاهش حجم تمرین برای مقادیر IGF-1‌ سرمی و کراتین کیناز بین سه گروه مشاهده نشد. اما مقادیر  IGF-1‌بین مرحله پیش‌آزمون با مراحل پس‌‌آزمون و پیگیری تفاوت معنی‌‌داری مشاهده گردید (05/0P<).
نتیجه‌گیری: کاهش حجم تمرین یک هفته‌‌ای متعاقب چهار هفته تمرین تخلیه گلیکوژنی نمی‌تواند بر میزان IGF-I‌ سرمی و کراتین کیناز مردان غیرفعال اثربخش باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of Two Methods of Tapering After Four Weeks of Glycogen Depletion on Cortisol and CRP in Healthy, Inactive Males

نویسندگان [English]

  • Ahmad Alimardani 1
  • Abdolkarim Shokri 2
  • Mahdi Rasouli 2
  • Rohollah Daei 3
1 Assistant Professor, Department of Sports Sciences, University of Qom, Qom, Iran
2 Master's degree, Sports Physiology, University of Qom, Qom, Iran.
3 Instructor, Department of Sports Science, University of Qom, Qom, Iran.
چکیده [English]

Purpose: The aim of this study was to compare two methods to reduce exercise volume after four weeks of glycogen depletion training on cortisol stress levels and CRP in inactive healthy males.
Method: The current research is semi-experimental with a pre-post-test design including a control group. The statistical population of this study consists of inactive, healthy male students from Qom University who have completed the physical education unit. Thirty healthy male students, who were not engaged in regular physical activity, were randomly selected and divided into three groups. The first group underwent a 50% reduction in training volume (n=11), the second group a 75% reduction in training volume (n=11), and the third group served as the control (n=8). Following four weeks of glycogen depletion training, a week of training adjustment was carried out. Blood samples were collected at three stages: at the beginning of the training protocol period, and 48 hours after the final training session, from the Antecubital vein. ELISA and immunoradiometric techniques were utilized to assess the serum concentrations of IGF-1 and creatine kinase, respectively. To analyze differences between and within groups, the analysis of variance test with repeated measurements was conducted at a significance level of α=0.05.
Findings: No significant difference was observed between the three groups in serum IGF-1 and creatine kinase levels after the training volume reduction period. However, a significant difference was observed in IGF-1 levels between the pre-test stage, post-test stage, and follow-up (P<0.05).
Conclusion: Reducing the volume of training for one week following four weeks of glycogen depletion training does not have an effect on serum IGF-I and creatine kinase levels in inactive men.
 
 

کلیدواژه‌ها [English]

  • Tapering
  • Glycogen depletion
  • Cortisol
  • CRP
  • Healthy inactive men
  1. Shohani M, Badfar G, Nasirkandy MP, Kaikhavani S, Rahmati S, Modmeli Y, Soleymani A & Azami M. The Effect of Yoga on Stress, Anxiety, and Depression in Women. Int J Prev Med. 2018; 21: 1-3. https://doi.org/10.4103/ijpvm.IJPVM_242_16
  2. Bompa TO & Carrera M. Periodization training for sports. 2005.
    YRL= https://cir.nii.ac.jp/crid/1130282270435520512
  3. Koepp KK & Janot JM. Tapering: science and practice: avoid overtraining and enhance athletic performance by using basic tapering principles. IDEA Fitness Journal. 2005; 2(8): 50-8.
  4. Mujika Ii. Tapering and peaking for optimal performance. Human Kinetics Champaign, http://www.inigomujika.com/libros/tapering-and-peaking-for-optimal-performance/
  5. Paraiso LF, Gonçalves-E-Oliveira AF, Cunha LM, de Almeida Neto OP, Pacheco AG, Araújo KB, Garrote-Filho MD, Bernardino Neto M & Penha-Silva N. Effects of acute and chronic exercise on the osmotic stability of erythrocyte membrane of competitive swimmers. PloS one. 2017; 12(2): e0171318. https://doi.org/10.1371/journal.pone.0171318
  6. Vachon A, Berryman N, Mujika I, Paquet JB, Arvisais D & Bosquet L. Effects of tapering on neuromuscular and metabolic fitness in team sports: a systematic review and meta-analysis. European journal of sport science. 2021; 21(3): 300-311.
    https://doi.org/1080/17461391.2020.1736183
  7. Cadegiani FA & Kater CE. Basal Hormones and Biochemical Markers as Predictors of Overtraining Syndrome in Male Athletes: The EROS-BASAL Study. Journal of athletic training. 2019; 54(8): 906-14. https://doi.org/4085/1062-6050-148-18
  8. Rosset R, Lecoultre V, Egli L, Cros J, Dokumaci AS, Zwygart K, Boesch C, Kreis R, Schneiter P & Tappy L. Postexercise repletion of muscle energy stores with fructose or glucose in mixed meals. Am J Clin Nutr. 2017; 105(3): 609-617. https://doi.org/3945/ajcn.116.138214
  9. Leal DV, Standing ASI, Furmanski AL & Hough J. Polymorphonuclear leucocyte phagocytic function, γδ T-lymphocytes and testosterone as separate stress-responsive markers of prolonged, high-intensity training programs. Brain Behav Immun Health. 2021; 13: 100234.
    https://doi.org/10.1016/j.bbih.2021.100234
  10. Oliveira RA, Sierra APR, Benetti M, Ghorayeb N, Sierra CA, Kiss MAPDM & Cury-Boaventura MF. Impact of Hot Environment on Fluid and Electrolyte Imbalance, Renal Damage, Hemolysis, and Immune Activation Postmarathon. Oxidative Medicine and Cellular Longevity. 2017: 1-11. https://doi.org/10.1155/2017/9824192
  11. Bagheri L & Faramarzi M. The effect of eight weeks of combined training on the ratio of growth hormone to insulin-like growth factor in an elderly women's serum. Journal of exercise physiology and physical activities. 2015; 8(2): 249-1256. [in persian]
  12. Nasrollahi H, Gaeini AA, Biglari S & Ghardashi Afousi A. Changes of insulin-like growth factor I gene expression in gastrocnemius muscle of male Wistar rats after a period of high-intensity interval training. Daneshvar Medicine. 2020; 25(5): 31-38. [in persian]
  13. Mobaraki A, Hejazi M & Ramadanpour MR. Effect of eight weeks aerobic periodic training with increasing intensity on insulin-like growth factor (IGF-1) and insulin resistance in middle-aged women with type 2 diabetes. J Birjand Univ Med Sci. 2018; 25(4): 317-325. [in persian]
  14. Abdi Keykanlo N, Rohani H & Asari F. Effects of 8 weeks aerobic training on body composition and plasma levels of insulin- like growth factor-1 and insulin-like growth factor binding protein-3 in obese women. 2014; 5(3): 302-309. [in persian]
  15. Manojlović V & Erčulj F. Using blood lactate concentration to predict muscle damage and jump performance response to maximal stretch-shortening cycle exercise. The Journal of sports medicine and physical fitness. 2018; 59(4): 581-586.
    https://doi.org/10.23736/S0022-4707.18.08346-9
  16. Ball S, Halaki M, Sharp T & Orr R. Injury Patterns, Physiological Profile, and Performance in University Rugby Union. Int J Sports Physiol Performance. 2018; 13(1): 69-74.
    https://doi.org/10.1123/ijspp.2017-0023
  17. Jürimäe J & Purge P. Irisin and inflammatory cytokines in elite male rowers: adaptation to volume-extended training period. J Sports Med Phys Fitness. 2020; 61(1): 102-108.
    https://doi.org/10.23736/S0022-4707.20.11076-4
  18. Ghasemi Kahrizsangi A, Kazemi A, Ravasi A & Dehkhoda M. The effect of glucose and glutamine supplementation on serum HSP72 in non-athlete men during four weeks exhausting endurance-intermittent training. Res in Sport Med & Technol. 2014; 12(7): 1-12. [in persian]
  19. Amaro-Gahete FJ, De-La-O A, Sanchez-Delgado G, Robles-Gonzalez L, Jurado-Fasoli L, Ruiz JR & Gutierrez A. Whole-body electromyostimulation improves performance-related parameters in runners. Frontiers in physiology. 2018; 9: 1576. https://doi.org/10.3389/fphys. (2018). 01576
  20. Rusnak M, VanderMeulen M, Byrd B, Byrd G, Rusnak R, Martin J & Hew-Butler T. Muscle Damage, Soreness, and Stress During Preseason Training in Collegiate Swimmers. Clinical Journal of Sport Medicine. 2021; 31(3): 237-43.
    https://doi.org/10.1097/JSM.0000000000000736
  21. Raimundo JAG, Turnes T, de Aguiar RA, Lisbôa FD, Loch T, Ribeiro G & Caputo F. The Severe Exercise Domain Amplitude: A Comparison Between Endurance Runners and Cyclists. Research Quarterly for Exercise and Sport. 2019; 90(1): 3-13.
    https://doi.org/10.1080/02701367.2018.1549356
  22. Hovanlo F, Khosrow E & Alizadeh R. The effects of two tapering methods on physical and physiological factors in amateur soccer players. World Journal of Sport Sciences. 2012; 6(2):
    194-9.
  23. Lundby C, Hamarsland H, Hansen J, Bjørndal H, Berge SN, Hammarstöm D & Rønnestad BR. Hematological, skeletal muscle fiber, and exercise performance adaptations to heat training in elite female and male cyclist. Journal of Applied Physiology. 2023; 135(1): 217-26.
    https://doi.org/10.1152/japplphysiol.00115.2023
  24. Méline T, Mathieu L, Borrani F, Candau R & Sanchez AM. Systems model and individual simulations of training strategies in elite short-track speed skaters. Journal of sports sciences. 2019; 37(3): 347-55. https://doi.org/10.1080/02640414.2018.1504375
  25. Schmit C, Duffield R, Hausswirth C, Brisswalter J & Le Meur Y. Optimizing Heat Acclimation for Endurance Athletes: High- Versus Low-Intensity Training. Int J Sports Physiol Perform. 2018; 13(6): 816-23. https://doi.org/10.1123/ijspp.2017-0007. PMID: 28872380
  26. White P, Abbey S & Angus B. Anomalies in the review process and interpretation of the evidence in the NICE guideline for chronic fatigue syndrome and myalgic encephalomyelitis. J Neurol Neurosurg Psychiatry. 2023; 10: 2022-330463. https://doi.org/10.1136/jnnp-2022-330463
  27. Kashef M, Nameni F & Lari A. The effect of static stretching trainings derived from eccentric contractions on delayed onset muscle sureness. Olympic Journal. 2003; 10(3): 12-21. [in persian]