

The effect of 8 weeks of RNT training on core stability in volleyball players with ankle instability

Ftemeh Karbalae Ali ¹ , Safoora Sabbaghian Rad ²

1. M.A. Student, Department of Sports Sciences, Faculty of Literature and Humanities, Toho Mehr University, Qom, Iran.
2. Assistant Professor, Department of Sports Sciences, Faculty of Literature and Humanities, University of Qom, Qom, Iran

Article Info

Article type:
Research Article

Article history:
Received 29 Jun 2025
Received in revised form
25 July 2025
Accepted 02 Sep 2025
Available online 23
Sep 2025

Keywords:
Reactive Neuromuscular Training (RNT), Core Stability, Ankle Instability, Volleyball Players.

ABSTRACT

Objective: The present study aimed to investigate the effects of an 8-week RNT exercise program on core stability in female volleyball players suffering from chronic ankle instability.

Methods: In this quasi-experimental study, 30 female volleyball players from Qom city leagues diagnosed with CAI were randomly assigned to either an experimental group (n=15) or a control group (n=15). The experimental group performed an RNT protocol for 45 minutes per session, three times a week, over eight weeks. The protocol included exercises such as squats on a Bosu ball, resisted lunges, planks, and single-leg balance activities using elastic bands to provide reactive feedback. Core stability was assessed using a timed plank test in both pre-test and post-test measurements. Data were analyzed using paired t-tests and analysis of covariance (ANCOVA) with SPSS software version 25.

Results: The statistical analysis revealed a significant improvement in core stability endurance time for the experimental group following the 8-week intervention ($p \leq 0.001$). While the experimental group showed a significant within-group increase, no significant change was observed in the control group. The between-group comparison in the post-test also indicated a statistically significant difference in favor of the RNT group ($p \leq 0.001$).

Conclusion: An 8-week program of Reactive Neuromuscular Training significantly improves core stability in female volleyball players with chronic ankle instability. These findings suggest that incorporating RNT protocols into rehabilitation and conditioning programs can be an effective strategy for enhancing central stability, which may contribute to injury prevention and improved functional performance in athletes with CAI.

Cite this article: Karbalae Ali, F; Sabbaghian Rad, S., The effect of 8 weeks of RNT training on core stability in volleyball players with ankle instability. *Applied Research in Sports Nutrition and Exercise Science*, 2025;2(3):60-73.
[10.22091/arsnes.2024.11878.1050](https://doi.org/10.22091/arsnes.2024.11878.1050)

© The Author(s).

DOI: [10.22091/arsnes.2024.11878.1050](https://doi.org/10.22091/arsnes.2024.11878.1050)

Publisher: University of Qom.

Extended Abstract

Introduction

Lateral ankle sprains represent one of the most common musculoskeletal injuries in athletic populations, constituting over 40% of all sports-related injuries. A significant portion of individuals who sustain an initial sprain develop a condition known as chronic ankle instability (CAI), characterized by persistent symptoms of giving way, recurrent sprains, pain, and diminished self-reported function. When inadequately rehabilitated, CAI leads to substantial impairments, including deficits in range of motion, postural control, proprioception, strength, and overall athletic performance. The ankle joint's stability is a complex interplay of static stabilizers (ligaments and bony architecture) and dynamic stabilizers (neuromuscular control). Following injury, a disruption in sensorimotor control often occurs, negatively affecting the feedforward and feedback mechanisms essential for dynamic joint stabilization during functional activities.

Volleyball is a sport with a particularly high incidence of ankle injuries due to its demanding biomechanics, which involve frequent jumping, landing, cutting, and sudden directional changes. Athletes with CAI frequently exhibit altered movement strategies and compromised dynamic stability, which may extend beyond the local ankle complex to affect more proximal segments. Core stability, defined as the ability to control the position and motion of the trunk over the pelvis to allow optimal force production, transfer, and control throughout the entire kinetic chain, is fundamental for athletic performance and injury prevention. A robust core facilitates efficient energy transfer from the lower extremities to the upper body during explosive activities and is crucial for

maintaining balance during unstable postures. There is a growing theoretical and clinical rationale suggesting that deficits in core stability may be both a contributing factor to and a consequence of distal joint pathologies like CAI, as the body compensates for a weak link in the kinetic chain.

Traditional rehabilitation for CAI has often focused on local strengthening, proprioceptive training, and balance exercises for the affected ankle. While beneficial, these approaches may not fully address potential proximal deficits or the integrated neuromuscular dysfunction associated with CAI. In recent decades, Reactive Neuromuscular Training (RNT) has emerged as an advanced corrective exercise methodology. Developed by Voight and Cook, RNT utilizes externally applied, low-intensity, and unpredictable perturbations (often via elastic bands) during functional movement patterns to stimulate and retrain the neuromuscular system. The principle is to challenge faulty movement patterns reactively, forcing the central nervous system to recruit the appropriate stabilizer muscles in a coordinated and timely manner to correct posture and alignment. Unlike traditional strength training, RNT does not aim to load the muscle for hypertrophy; instead, it focuses on enhancing neuromuscular efficiency, proprioceptive acuity, and dynamic joint stability under conditions that mimic the unpredictable demands of sport. By applying subtle resistance in a destabilizing manner, RNT prompts automatic, reflexive corrections, thereby improving the body's ability to maintain optimal alignment during dynamic tasks. Given the integrated nature of the kinetic chain and the proposed deficits in

sensorimotor control in CAI, an RNT protocol that engages the entire core and lower extremity could be particularly effective in improving core stability, which may subsequently influence overall function and stability in athletes with CAI. Therefore, the primary aim of this study was to investigate the effects of a structured, 8-week RNT intervention on objective measures of core stability in female volleyball players diagnosed with chronic ankle instability.

Methods

This study employed a quasi-experimental design with a pretest-posttest control group structure. The target population consisted of female club volleyball players from Qom, Iran. Thirty athletes who met the specific inclusion criteria were purposively selected and subsequently randomly assigned into either an experimental group ($n=15$) or a control group ($n=15$). The inclusion criteria were: a history of at least one significant lateral ankle sprain more than 12 months prior, recurrent episodes of the ankle giving way or feeling unstable, active participation in league competitions, an age range of 16 to 35 years, and a score of less than 24 on the Persian version of the Cumberland Ankle Instability Tool (CAIT), a valid and reliable questionnaire for identifying CAI. Participants with acute injuries, fractures, or other neurological or musculoskeletal conditions affecting the spine or lower limbs were excluded.

Prior to and immediately following the 8-week intervention period, all participants underwent assessment for core stability. The primary outcome measure was core muscular endurance, evaluated using a standardized prone plank test. Participants assumed a forearm plank position with the body in a straight line from head to heels, and the time (in seconds) they could maintain this correct posture until failure was recorded with a digital stopwatch. This isometric hold test is

a widely accepted and practical field measure for assessing the endurance of the anterior core stabilizers.

The experimental group underwent a supervised RNT program for eight weeks, comprising three sessions per week, each lasting approximately 45-60 minutes. Each session began with a 15-minute dynamic warm-up on a treadmill and with mobility exercises. The core of each session was dedicated to RNT exercises designed to challenge dynamic stability and postural control through reactive feedback. The protocol progressed in difficulty over the weeks and included exercises such as: squats and single-leg stands on a Bosu ball while resisting pull from an elastic band attached to the waist or limbs; lunge variations with elastic band perturbations; planks with alternating arm/leg lifts; resisted rowing; and single-arm exercises like kettlebell presses while maintaining a stable core against band-induced rotation. The elastic bands were used not for maximal resistance but to create controlled, unexpected deviations that the athlete had to correct reactively. Emphasis was consistently placed on maintaining proper spinal alignment and core bracing throughout all movements. Each exercise was performed for 3 sets of 10 repetitions (or 30-60 second holds for isometric exercises), with adequate rest between sets. Sessions concluded with a 10-minute cool-down period. The control group was instructed to maintain their regular volleyball training and daily activities without engaging in any structured corrective or core-specific exercise program.

All statistical analyses were performed using SPSS software version 25. Descriptive statistics (mean \pm standard deviation) were calculated for all variables. The normality of data distribution was confirmed using the Shapiro-Wilk test, and homogeneity of variances was verified with Levene's test. To

compare the baseline characteristics between groups, independent t-tests were used. For the primary outcome analysis, an Analysis of Covariance (ANCOVA) was employed to compare post-test core stability scores between the experimental and control groups, while controlling for pre-test scores as a covariate. This method increases statistical power by accounting for baseline differences. Additionally, paired-sample t-tests were used to evaluate within-group changes from pre-test to post-test. The significance level was set at $p \leq 0.05$.

Results

The baseline demographic and anthropometric characteristics of the participants are presented in Table 1. There were no statistically significant differences between the experimental and control groups in terms of age, height, weight, or body mass index (BMI) at the outset of the study ($p > 0.05$), confirming that the groups were homogenous regarding these variables.

The results of the inferential statistical analysis for the core stability outcome are summarized in Table 4. The ANCOVA, controlling for pre-test scores, revealed a highly significant between-group difference in post-test core endurance times ($F = 738.17$, $p \leq 0.001$). This indicates that the change observed in the experimental group was substantially greater than any change or lack thereof in the control group.

The within-group analysis using paired t-tests provided further detail. The experimental group demonstrated a statistically significant improvement in core stability from pre-test to post-test ($p \leq 0.001$). The mean plank time for the experimental group increased from 54.80 ± 2.02 seconds to 70.86 ± 4.10 seconds, reflecting a mean improvement of approximately 16 seconds. In stark contrast, the control group showed no significant change in their core endurance time over the same 8-week period ($p = 0.086$). Their mean

score slightly decreased from 86.47 ± 3.13 seconds to 86.46 ± 2.97 seconds.

These findings clearly demonstrate that the 8-week Reactive Neuromuscular Training program was effective in significantly enhancing core stability endurance in female volleyball players with chronic ankle instability, whereas the regular athletic activity of the control group did not produce such an effect.

Discussion

The principal finding of this study is that an 8-week intervention utilizing Reactive Neuromuscular Training led to a significant improvement in objective core stability, as measured by the plank test, in volleyball players with CAI. This result supports the study's hypothesis and aligns with the growing body of literature emphasizing the importance of integrated, neuromuscular approaches to rehabilitation that look beyond the isolated injured joint.

The observed improvement can be attributed to the specific mechanisms targeted by the RNT protocol. The exercises were designed to constantly challenge the body's ability to maintain a stable core in the presence of external, unpredictable perturbations. This type of training is believed to enhance proprioceptive feedback and the central nervous system's processing speed, leading to more efficient co-contraction of global and local core stabilizers. Exercises performed on unstable surfaces like the Bosu ball, combined with directional pulls from elastic bands, required the athletes to continuously make subtle, reflexive adjustments to maintain neutral spinal alignment. This process likely improved the intramuscular and intermuscular coordination of the core musculature, training them to function as a cohesive unit to resist unwanted movement (anti-rotation, anti-flexion, anti-extension). The significant increase in plank endurance time specifically indicates an enhancement in

the fatigue resistance of the anterior core muscles, which is critical for maintaining proper posture and technique during prolonged periods of play or repetitive jumping and landing sequences in volleyball. From a kinetic chain perspective, these findings are particularly relevant for CAI. A stable core acts as a solid foundation for distal segment movement. If the core is unstable, the body may adopt compensatory strategies, such as increased trunk sway or altered lower limb alignment, to maintain overall balance, potentially placing abnormal stresses on already vulnerable joints like the ankle. By improving proximal stability, RNT may help to optimize lower extremity biomechanics, leading to more controlled and stable landing patterns. This could theoretically reduce the excessive inversion moments at the ankle that often lead to sprains. Furthermore, enhanced core stability contributes to better dynamic postural control, which is frequently impaired in individuals with CAI. The ability to quickly recruit core muscles in response to a loss of balance (e.g., upon landing on an opponent's foot) is a crucial protective mechanism.

The present study adds a novel dimension to CAI rehabilitation research by applying a comprehensive RNT protocol with a focus on core outcomes. While previous studies have examined the effects of core training or balance training on ankle stability, the use of RNT principles—specifically the application of reactive perturbations during functional, multi-joint exercises—to target core stability in this population is less common. The results suggest that RNT is an effective method for addressing potential core deficits associated with CAI. It is important to note that the control group, which continued their regular sport participation, did not improve, highlighting that sport-specific training alone may not be sufficient to correct underlying neuromuscular deficiencies in core stability

for athletes with CAI. This underscores the need for targeted, off-court intervention programs.

Conclusion

In conclusion, the findings of this study demonstrate that an 8-week program of Reactive Neuromuscular Training is an effective intervention for significantly improving core stability endurance in female volleyball players suffering from chronic ankle instability. The RNT protocol, through its use of controlled perturbations and unstable environments, successfully enhanced the neuromuscular control and endurance of the core musculature. These results have important practical implications for sports medicine and athletic training. Rehabilitation professionals, including physiotherapists, athletic trainers, and strength and conditioning coaches, should consider incorporating principles of RNT into the management and prevention programs for athletes with CAI. By integrating such exercises, which focus on reactive stability and whole kinetic chain integration, clinicians can address not only the local ankle deficits but also potential proximal impairments in core control. This holistic approach may lead to more robust functional outcomes, facilitate safer return to sport, and potentially reduce the risk of recurrent ankle injuries. Future research should investigate the longitudinal effects of RNT on the rate of ankle re-injury and its impact on specific sport performance metrics in volleyball and other high-risk sports.

Keywords: Sarcopenia, Resistance Training, Anabolic Steroids, Body Composition, Muscle Function

Ethical Considerations

In conducting the research, ethical considerations were taken into account in accordance with the guidelines of the Ethics

Committee of the University of Qom.

Funding/Financial Support

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors' Contributions

Authors contributed equally in preparing this

article.

Conflict of Interest

The authors declared no conflict of interest.

Acknowledgments

We express our deepest gratitude to all participants in this study and those who assisted us during the research process.

تأثیر ۸ هفته تمرینات RNT بر ثبات هسته مرکزی والیالیست‌های دارای بی‌ثباتی مج‌پا

فاطمه کربلایی علی^۱ ، صفورا صباغیان راد^۲

- دانشجو کارشناسی ارشد، گروه علوم ورزشی، دانشکده علوم انسانی، دانشگاه طلوع مهر قم، قم، ایران.
- نویسنده مسئول، استادیار گروه علوم ورزشی، دانشکده ادبیات و علوم انسانی، دانشگاه قم، قم، ایران

اطلاعات مقاله

چکیده

هدف: پیچ‌خوردگی مج‌پا از شایع‌ترین آسیب‌های ورزشی است که در صورت توان‌بخشی ناقص، اغلب به بی‌ثباتی مزمن مج‌پا می‌انجامد. این عارضه با نقص در تعادل، حس عمقی و عملکرد ورزشی همراه است. ثبات هسته مرکزی به عنوان عاملی کلیدی در کنترل پویایی تمام بدن، نقش مهمی در عملکرد و پیشگیری از آسیب دارد. تمرینات عصبی عضلانی واکنشی (RNT) با اعمال اغتشاشات خارجی کنترل شده، به عنوان یک رویکرد تمرینی برای بازآموزی الگوهای حرکتی و بهبود ثبات پویا معرفی شده‌اند. پژوهش حاضر با هدف بررسی تأثیر هشت هفته تمرینات RNT بر ثبات هسته مرکزی والیالیست‌های دختر مبتلا به بی‌ثباتی مزمن مج‌پا انجام شد.

روش: در این مطالعه نیمه‌تجربی، ۳۰ والیالیست دختر با تشخیص بی‌ثباتی مزمن مج‌پا به صورت تصادفی در دو گروه تجربی (۱۵ نفر) و کنترل (۱۵ نفر) قرار گرفتند. گروه تجربی به مدت هشت هفته و هر هفته سه جلسه، پروتکل تمرینات RNT را اجرا کردند. این تمرینات شامل حرکاتی مانند اسکووات و ایستادن تک‌پا روی سطوح ناپایدار (بوسوبال) همراه با اعمال کشش با باندهای کشی برای ایجاد اختلال در تعادل بود. ثبات هسته مرکزی با استفاده از آزمون زمان‌سنجی پلانک در پیش‌آزمون و پس‌آزمون اندازه‌گیری شد. داده‌ها با استفاده از آزمون‌های تی وابسته و تحلیل کوواریانس تجزیه و تحلیل شدند.

یافته‌ها: نتایج نشان داد که پس از هشت هفته، بهبود معناداری در زمان استقامت پلانک در گروه تجربی رخ داده است. مقایسه بین گروهی با کنترل نمرات پیش‌آزمون، تفاوت معناداری را در نمرات پس‌آزمون گروه تجربی نسبت به گروه کنترل نشان داد. در حالی که گروه تجربی بهبود درون‌گروهی چشمگیری داشت، گروه کنترل تغییر معناداری را تجربه نکرد.

نتیجه‌گیری: به نظر می‌رسد یک دوره هشت‌هفته‌ای تمرینات عصبی عضلانی واکنشی می‌تواند به عنوان یک روش تمرینی مؤثر برای افزایش استقامت و ثبات عضلات هسته مرکزی در والیالیست‌های دختر مبتلا به بی‌ثباتی مج‌پا به کار رود. ادغام این پروتکل در برنامه‌های توان‌بخشی و تمرینی این ورزشکاران می‌تواند به بهبود کنترل مرکزی و احتمالاً کاهش خطر آسیب‌های مکرر کمک کند.

استناد: کربلایی علی، فاطمه؛ صباغیان راد، صفورا. مقایسه اثربخشی مداخلات ورزشی در مقابل مداخلات دارویی بر بهبود قدرت و توده عضلانی در سالمندان مبتلا به

سارکوپنی: یک مرور جامع. پژوهش‌های کاربردی در تغذیه ورزشی و علم تمرین، ۱۴۰۴، ۲: ۷۳-۶۰.

DOI: [10.22091/arsnes.2024.11878.1050](https://doi.org/10.22091/arsnes.2024.11878.1050)

© نویسنده‌گان.

ناشر: دانشگاه قم.

مفصل مج پا هماهنگ‌ترین مفصل بدن انسان است ثبات این مفصل توسط پیکربندی استخوانی قوزک پا و توسط رباط‌های مج پا ایجاد می‌شود، رباط‌های ثبات‌دهنده مج پا عبارت‌اند از: سندسماوز-فیبیولار در قسمت فوقانی، رباط دلتوئید در قسمت داخلی و رباط کالکانئوفیبیولار تالار (CFL) در قسمت جانبی، رباط کالکانئوفیبیولار (PTFL) در قسمت خلفی، تشکیل شده است (۱). بی‌ثباتی مج پا، علائمی نظیر، شلی لیگامنت و اختلال در کنترل وضعیت است. همچنین برخی از عوامل خطر آسیب‌دیدگی، مانند رگ‌به‌رگ شدن، فعالیت‌های حرکتی و غیرمنتظره، تغییر سریع ساده جهت، خاک یا کفش و غیره است. برنامه تمرینی به کاهش میزان آسیب و افزایش میزان عملکرد ورزشی کمک می‌کند (۲،۳). پیچ‌خوردگی مج پا یکی از شایع‌ترین آسیب‌دیدگی‌های ورزشی در بین افراد ورزشکار است که بیشتر از ۴۰ درصد از آسیب‌های ورزشی را شامل می‌شود (۴). همچنین در صورت پیچ‌خوردگی مج پا اگر درمان ناکافی داشته باشد منجر به بی‌ثباتی مزمن می‌شود. آسیب رباط‌های جانبی که شامل کالکانئوفیبیولار و تالوفیبیولار قدامی - خلفی حدود ۶۴٪ است و شایع‌تر از آسیب دیدگی رباط دلتوئید (حدود ۲۰٪) و در صورت شکستگی و دررفتگی شدید مج پا اتفاق می‌افتد (۵). ۷۲٪ افراد مبتلا به اختلالات مفصل مج پا قادر به حفظ سطح فعالیت قبلی خود نبودند (۶). ورزش‌هایی که در آن آسیب‌دیدگی مج پا بیشتر اتفاق می‌افتد شامل والیبال، بسکتبال، فوتبال، هندبال و دیگر ورزش‌هایی که نیاز مند توقف ناگهانی، جهش و حرکات پرشی ناگهانی است. همچنین مطالعات نشان داده که حدود ۲۵٪ از آسیب‌های ورزشی مربوط به مج پا بوده و حدود ۸۵٪ درصد آن مربوط به رباط خارجی مج پا و حدود ۴۱٪ از کل صدمات ورزشی در رشته والیبال وجود دارد (۷،۸). امروزه به دلیل بالا بودن سطح تعادل و بهره‌گیری از حس عمقی، وجود لیگامن های خارجی و کپسول مفصلی مج پاکه غنی از گیرنده‌های حس عمقی اند در توانبخشی ورزشکار آسیب دیده توجه زیادی می‌شود این فرضیه وجود دارد که پس از آسیب میزان پیام‌های حسی پیکری - محیطی کاهش یافته و موجب برهم خوردن کنترل عصبی - عضلانی می‌گردد (۹،۱۰). به دلیل اهمیت این آسیب و از آنجایی که به عقیده برخی از پژوهشگران برای بهبود ثبات هسته مرکزی و به دنبال آن عملکرد افراد مبتلا به بی‌ثباتی و آسیب مزمن مج پا پروتکل تمرینی باید جامع بوده و علاوه بر نایه مج پا، نایه ران و زانو را نیز درگیر کرده و بر کل نایه اندام تحتانی تمرکز داشته باشد. در ۲۵ سال اخیر نوعی تمرینات اصلاحی با عنوان تمرینات عصبی عضلانی واکنشی (RNT) توسط ویگوت و کوک معرفی شده است (۱۱). کاربرد این تمرینات در سال‌های اخیر بسیار مورد توجه قرار گرفته است محققان از این تمرینات برای بازگرداندن ثبات عملکردی و افزایش مهارت‌های کنترل حرکتی در ورزشکاران آسیب‌دیده استفاده نمودند (۱۲) تکنیک‌های تمرینات RNT اختلالات الگوی غیرارادی ناکارآمد حرکتی را با استفاده از یک نیروی خارجی درجه پایین به صورت واکنشی اصلاح می‌نمایند (۱۳) این تمرینات با استفاده از باندهای کشی با بار سبک، الگوی صحیح حرکتی فرد را افزایش داده و به مجری حرکت گفته می‌شود که اجزه ندهد تا مرتب ناراسته‌هایی حرکتی او را تشدید نماید. این باند برای افزایش قدرت عضلانی مورد استفاده قرار نمی‌گیرد؛ بلکه به منظور ایجاد تنش‌هایی است بر روی پوسچر و پوزیشن صحیح بدن برای بهبود ثبات عضلانی پویا که در طول فعالیت تمرکز دارد (۱۴،۱۵) به همین دلیل در تمرینات تعادلی به طور موثری از مکانیسم‌های کنترل - عصبی - عضلانی برای حفظ تعادل در حین حرکت بکار گرفته می‌شود در حالیکه در تمرین قدرتی ورزشکار بیشتر به تعادل ایستا نیاز دارد و همچنین در تمرینات ترکیبی تعادلی و (قدرتی) ورزشکار از یکپارچگی گیرنده‌های حس عمقی و هماهنگی عضلات در فعالیتهای هم انتقام‌برداری بهره می‌گیرد با توجه به اینکه در اجرای تمرینات ترکیبی، ورزشکار از تمرینات با ویژگیها و شکل‌های مختلف استفاده می‌کند و این توعی ایجاد شده در تمرین و نیز اجرای همزمان تمرینات تعادلی و قدرتی که موجب فعل مکانیسم‌های بهبود دهنده‌گی تعادل می‌گردد در نهایت منجر به بهبود بیشتر عملکرد می‌گردد (۱۶). در این مطالعه تأثیر ۸ هفته تمرینات RNT بر ثبات هسته مرکزی والیالیست‌های دارای بی‌ثباتی مج پا بررسی شد.

مواد و روش‌ها

طرح پژوهش

پژوهش حاضر از نوع تحقیق نیمه‌تجربی و کاربردی با طرح پیش‌آزمون - پس‌آزمون یک گروه تجربی و یک گروه کنترل می‌باشد.

جامعه آماری

جامعه آماری این تحقیق دختران والیالیست لیگ‌های آزاد قم که مبتلا به بی‌ثباتی مج پا بودند. این تحقیق شامل ۳۰ نفر آزمودنی بودند که به

صورت تصادفی در گروه‌های ۱۵ نفر گروه کنترل و ۱۵ نفر گروه تجربی تقسیم‌بندی شدند. معیار‌های ورود آزمودنی‌ها داشتن سابقه پیچ‌خوردگی در مچ پا، داشتن سابقه شرکت در مسابقات لیگ آزاد و کسب امتیاز پایین تر از ۲۴ از مجموع ۳۰ امتیاز در پرسش نامه کامبرلند بودند و رده سنی والیالیست‌ها از ۱۶ تا ۳۵ سال است.

ابزار و روش‌های اندازه‌گیری

نسخه فارسی پرسش‌نامه بی‌ثباتی مج‌پا کامبرلند (CAIT)، کرونومتر دیجیتال، ترازو، متر ثبات هسته مرکزی

برای ارزیابی ثبات هسته مرکزی از تست پلانک استفاده شد و از آزمودنی خواسته شد حالت پلانک را به خود بگیرد و سر، لگن و پاشنه در یک راستا قرار دهد و تا حد ناتوانی در این حالت قرار بگیرد و زمان اسقرار هر فرد در وضعیت پلانک با کرونومتر ثبت شد (۱۷).

پروتکل تمرینی

- پروتکل تمرینات RNT به منظور انجام تحقیق، آزمودنی‌ها ۸ هفته تمرینات RNT را در قالب دو جلسه در هفته انجام دادند و پروتکل تمرینی در شروع تمرینات ابتدایی به آزمودنی‌ها آموزش داده شد و از آن تمرینات در ۱۶ جلسه استفاده شد و همچنین در هر جلسه تمرینی با استفاده از تردیمیل و حرکات جنبشی به گرم‌کردن پرداختند.

جدول ۱. پروتکل تمرینی

گرم‌کردن	تمرين	تعداد است	تعداد تکرار	سردکردن
۱۵ دقیقه	اسکوات روی بوسوال و حرکت روئینگ کش	۳	۱۰ دقیقه	
۱۵ دقیقه	لانچ با کش	۳	۱۰ دقیقه	
۱۵ دقیقه	سرشانه کتل بل تک دست کش	۳	۱۰ دقیقه	
۱۵ دقیقه	اسکوات روی بوسوال تک دست کش	۳	۱۰ دقیقه	
۱۵ دقیقه	اسکوات کش مقاومتی با کمک یار تمرینی	۳	۱۰ دقیقه	
۱۵ دقیقه	فرشته تعادلی کشش کش همزمان	۳	۱۰ دقیقه	
۱۵ دقیقه	کرانچ پا صاف و کشش کش همزمان	۳	۱۰ دقیقه	
گرم‌کردن	تمرين	تعداد است	تعداد تکرار	سردکردن
۱۵ دقیقه	خط کش توپ میان پا و فلکشن تناوبی پا	۳	۱۰ دقیقه	
۱۵ دقیقه	ایستادن تعادلی تک پا روی بوسوال قسمت نیم‌دایره	۳	۳۰ ثانیه	۱۰ دقیقه
۱۵ دقیقه	دد لیفت دمبل توپ میان پا، پاشنه بالا	۳	۱۰ دقیقه	
۱۵ دقیقه	ایستادن تعادلی تک پا روی بوسوال قسمت صاف	۳	۳۰ ثانیه	۱۰ دقیقه
۱۵ دقیقه	پلانک	۳	۶۰ ثانیه	۱۰ دقیقه

روش تحلیل داده‌ها

داده‌های توصیفی مرتبط با پژوهش بر اساس آمار توصیفی گزارش شد. بدین منظور از میانگین و انحراف معیار استفاده شد. سپس، از روش آمار استنباطی جهت تجزیه و تحلیل داده‌ها استفاده شد. در این بخش از آزمون شاپیرو - ویلک جهت بررسی نرمال بودن توزیع داده‌ها استفاده شده است. همچنین همگنی واریانس بین گروهی با استفاده از آزمون لون مورد ارزیابی قرار گرفت. نهایتاً جهت مقایسه‌های بین گروهی از آزمون آنالیز کوواریانس استفاده شد. مقایسه‌های درون گروهی نیز با استفاده از آزمون t همبسته مورد ارزیابی قرار گرفت. کلیه آزمون‌های آماری با استفاده از

نرم افزار **SPSS** نسخه ۲۵ و در سطح معنی داری ۹۵ درصد با آلفای کوچکتر و یا مساوی با ۰/۰۵ ارزیابی شد. از نرم افزار **GraphPad PRISM9** جهت ترسیم نمودارها استفاده شد.

نتایج

در این مطالعه تأثیر ۸ هفته تمرینات **RNT** بر ثبات هسته مرکزی والیالیست‌های دارای بی‌ثباتی مچ پا مورد بررسی قرار گرفت. تجزیه و تحلیل داده‌ها نشان داد کخ تفاوت معنی‌داری بین میانگین نمرات ثبات هسته مرکزی در مرحله پس‌آزمون در گروه تجربی و کنترل مشاهده گردید که نشان‌دهنده اثربخشی تمرینات (**RNT**) در بهبود ثبات هسته مرکزی والیالیست‌های دارای بی‌ثباتی مچ پا بود.

جدول ۲. مقایسه شاخص‌های توصیفی و تن سنجی آزمودنی‌ها

P-value	گروه تجربی	گروه کنترل	شاخص
بین گروهی			
۰/۱۴۵	۲۱/۴۰ ± ۱/۰۴	۲۲/۶۶ ± ۱/۱۳	سن(سال)
۰/۸۶۰	۱۶۷/۸۰ ± ۱/۷۶	۱۶۹/۰۱ ± ۱/۸۰۷	قد(سانتی متر)
۰/۱۶۳	۶۸/۰۶ ± ۳/۷۱	۶۵/۷۳ ± ۲/۶۲	وزن(کیلو گرم)
۰/۳۰۳	۲۳/۵۳ ± ۱/۳۸	۲۲/۶۰ ± ۰/۸۰۳	شاخص توده بدنی(کیلو گرم/متر مربع)

*باتوجه به نتایج جدول ۱ هیچگونه تفاوت معنی‌داری بین گروهی در شاخص‌های توصیفی و تن سنجی مشاهده نشد. بنابراین گروه‌های پژوهش از این لحاظ همگن می‌باشند.

جدول ۳. بررسی طبیعی بودن توزیع داده‌ها

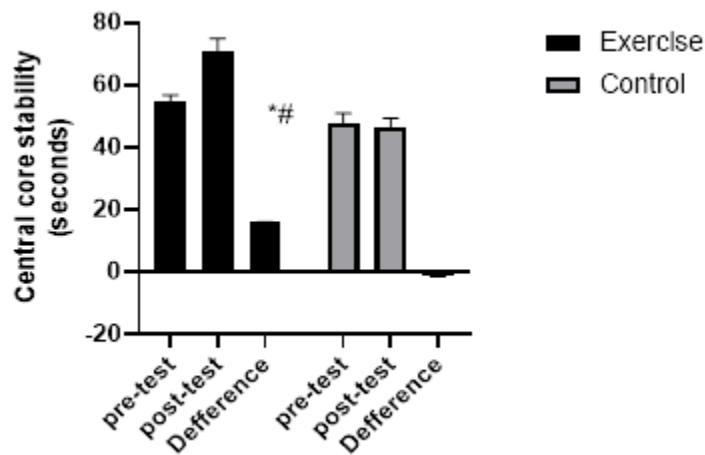
نتایج آزمون شاپیرو - ویلک جهت بررسی طبیعی بودن توزیع داده‌های پژوهش

p-value	گروه تجربی	گروه کنترل		شاخص	
	df	آماره	P-value	df	آماره
0/704	15	0/963	0/251	15	0/935
0/144	15	0/884	0/654	15	0/949
0/727	15	0/955	0/741	15	0/956
0/981	15	0/992	0/647	15	0/948
0/156	15	0/902	0/274	15	0/909

*باتوجه به نتایج آزمون شاپیرو ویلک جدول ۳ کلیه شاخص‌های مورد مطالعه از توزیع طبیعی برخوردارند. بنابراین، فرض نرمال بودن توزیع طبیعی داده‌ها برقرار است.

جدول ۴. نتایج آزمون لون جهت بررسی همگنی واریانس بین گروهی

p-value	df	آماره	شاخص
۰/۸۳۵	۱	۰/۴۵۸	سن(سال)
۰/۶۸۹	۱	۰/۱۶۵	قد(سانتی متر)
۰/۹۹۰	۱	۰/۵۰۸	وزن(کیلو گرم)
۰/۳۰۰	۱	۱/۱۳۸	شاخص توده بدنی(کیلو گرم/متر مربع)
۰/۷۷۳	۱	۰/۳۹۰	ثبات هسته مرکزی(ثانیه)


* با توجه به نتایج آزمون لون جدول ۴، شرط همگنی واریانس بین گروهی برای کلیه شاخص‌های پژوهش برقرار است بنابراین، شرط همگنی واریانس بین گروهی برای استفاده از آزمون‌های پارامتریک برقرار است.

جدول ۵. نتایج آزمون آنالیز کوواریانس جهت بررسی تفاوت‌های بین گروهی و آزمون با استه جهت مقایسه‌های درون‌گروهی ثبات هسته مرکزی

p-value	F	df	میانگین مربعات	گروه کنترل	گروه	زمان	متغیر
بین گروهی				$\pm 2/02$	$\pm 3/13$		
	۱	2442/969	54/80	47/86		پیش آزمون	
			$\pm 4/10$	$\pm 2/97$		پس آزمون	
			70/86	46/46			ثبات هسته مرکزی (ثانیه)
# $\leq 0/000$	۱۷/۷۳۸			$\pm 0/09$	$\pm 0/036$		اختلاف
			16/06	-1/4			
			$*\leq 0/001$	0/086	p-value		
			بین گروهی				

* نشان‌دهنده تفاوت معنی‌دار درون‌گروهی، # نشان‌دهنده تفاوت معنی‌دار بین گروهی.

با توجه به نتایج جدول ۵، تفاوت معنی‌دار بین گروهی ($p \leq 0/000$) در ثبات هسته مرکزی مشاهده می‌شود. به این ترتیب که ثبات هسته مرکزی در گروه تجربی افزایش معنی‌داری نسبت به گروه کنترل داشته است. به عنوان نتایج تکمیلی مقایسه‌های درون‌گروهی نشان‌دهنده اثربخشی معنی‌دار ثبات هسته مرکزی در گروه تجربی ($p \leq 0/001$) و عدم تفاوت معنی‌دار در گروه کنترل ($p = 0/086$) بود.

نمودار جدول ۵ مقایسه تفاوت‌های بین گروهی و درون‌گروهی ثبات هسته مرکزی والیوالیست‌های دارای بی ثباتی مج‌پا به دنبال هشت هفته تمرینات RNT

* نشان‌دهنده تفاوت معنی‌دار درون‌گروهی. # نشان‌دهنده تفاوت معنی‌دار بین گروهی.

بحث

هدف از پژوهش حاضر، بررسی تأثیر هشت هفته تمرینات عصبی عضلانی واکنشی (RNT) بر ثبات هسته مرکزی در والیبالیست‌های دختر مبتلا به بی‌ثباتی مزمن مچ پا بود. یافته‌های اصلی این مطالعه نشان داد که اجرای پروتکل تمرینی RNT به مدت هشت هفته منجر به بهبود معنادار در استقامت و ثبات عضلات هسته مرکزی، که با آزمون پلانک ارزیابی شد، گردید. در حالی که گروه کنترل که تنها به فعالیت‌های ورزشی معمول خود ادامه دادند، هیچ تغییر معناداری را تجربه نکردند. این نتایج، فرضیه اصلی پژوهش را مبنی بر اثربخشی تمرینات RNT در بهبود شاخص‌های ثبات مرکزی در جمعیت مورد مطالعه تأیید می‌کند. تفسیر این یافته‌ها مستلزم بررسی در بستر مکانیسم‌های نظری اثرگذاری RNT، مقایسه با دستاوردهای تحقیقات پیشین، و همچنین توجه به پیامدهای بالینی و کاربردی آن است.

مکانیسم اثر تمرینات RNT بر ثبات هسته مرکزی را می‌توان در چارچوب اصل اضافه بار عصبی و نیاز به تطابق سیستم عصبی-عضلانی با محرك‌های غیرمنتظره تبیین کرد. تمرینات RNT با اعمال اغتشاشات خارجی کنترل شده توسط باندهای کشی در حین اجرای الگوهای حرکتی عملکردی (همچون اسکووات و لانژ روی سطوح ناپایدار)، سیستم عصبی مرکزی را وادار می‌سازد تا به صورت واکنشی و خودکار، استراتژی‌های بهینه برای حفظ تعادل و وضعیت قرارگیری صحیح مفاصل را فراخوانی کند (Ghai, Ghai & Effenberg, 2023). این فرآیند مستلزم بهبود هماهنگی درون عضلانی و بروز عضلانی، زمان‌بندی فعال‌سازی عضلات عمیقی ثبات‌دهنده هسته (مانند عضله عرضی شکم و مولتی‌فیدوس)، و نیز افزایش کارایی چرخه‌های گیرنده-مرکز-اثرگذار حس عمیقی است. در واقع، این تمرینات نه تنها بر قدرت، بلکه بر سرعت و دقت پاسخ عضلات هسته در مواجهه با چالش‌های پویا تأکید دارند. مطالعه‌ای توسط Mohammadi و همکاران (۲۰۲۴) که به بررسی تأثیر تمرینات واکنشی بر کنترل پاسچر در ورزشکاران با سایقه آسیب رباط صلیبی قدامی پرداخت، نشان داد که اینگونه تمرینات منجر به بهبود معنادار در الگوی فعال‌سازی هم‌زمان (کو-کانترکشن) عضلات اطراف لگن و تنه می‌شود، یافته‌ای که همسو با مکانیسم پیشنهادی در پژوهش حاضر برای توضیح بهبود ثبات ایستای هسته (پلانک) است.

یافته این پژوهش مبنی بر بهبود ثبات هسته مرکزی پس از مداخله RNT، با نتایج تعدادی از مطالعات اخیر هم‌خوانی دارد. برای مثال، در مطالعه‌ای که توسط Alizadeh و همکاران (۲۰۲۳) بر روی بازیکنان فوتبال مبتلا به بی‌ثباتی عملکردی مچ پا انجام شد، یک برنامه ترکیبی شامل تمرینات تعادلی پویا و تمرینات مقاومتی با تأکید بر ثبات مرکزی منجر به بهبود هم در شاخص‌های ثبات مرکزی و هم در پایداری پویای مچ پا گردید. نویسنده‌گان این بهبودها را ناشی از افزایش یکپارچگی عصبی-عضلانی در سراسر زنجیره جنبشی دانستند. به طور مشابه، پژوهشی از Lee و Park (2024) که اثرات یک برنامه تمرین عصبی-عضلانی یکپارچه شامل المان‌های RNT را بر روی زنان ورزشکار با سایچه بی‌ثباتی مچ پا بررسی کرد، گزارش نمود که این تمرینات نه تنها زمان ماندن در وضعیت پلانک جانبی را افزایش داد، بلکه نمرات حس عمیقی مچ پا را نیز به طور معناداری بهبود بخشید. این نتایج حمایت کننده دیدگاه کل‌نگر در توانبخشی آسیب‌های اندام تحتانی است که بر ارتباط عملکردی بین ثبات پروگریمال (هسته) و ثبات دیستال (مچ پا) تأکید می‌ورزد.

با این حال، تفسیر جامع یافته‌های این پژوهش مستلزم بررسی و تحلیل احتمالی تفاوت‌های آن با برخی مطالعات دیگر است. به عنوان مثال، یک متانالیز که توسط Smith و همکاران (۲۰۲۳) منتشر شد، نشان داد که اگرچه تمرینات عصبی-عضلانی به طور کلی بر بهبود تعادل و عملکرد در افراد با بی‌ثباتی مچ پا مؤثر هستند، اما اندازه اثر این مداخلات بر شاخص‌های ایزوله ثبات مرکزی (در مقایسه با شاخص‌های تعادل پویای مرتبط با مچ پا) می‌تواند متغیر و گاهی کوچک باشد. یک توضیح احتمالی برای این ناهمخوانی ظاهری می‌تواند در طراحی خاص پروتکل RNT به کار رفته در مطالعه حاضر نیفته باشد. در این پژوهش، بسیاری از تمرینات (مانند اسکووات روی بوسویال با کش) به طور ذاتی مستلزم حفظ هم‌زمان ثبات در هسته مرکزی برای مقابله با اغتشاش و ثبات در مچ پا برای حفظ وضعیت روی سطح ناپایدار بودند. این طراحی یکپارچه ممکن است محرك قوی‌تری برای سیستم عصبی-عضلانی هسته ایجاد کرده باشد در مقایسه با پروتکل‌هایی که تمرینات ثبات مرکزی و تمرینات مچ پا را به صورت مجزا ارائه می‌دهند (Krause et al., 2024). بنابراین، خاصیت ترکیبی و عملکردی تمرینات RNT احتمالاً عاملی کلیدی در دستیابی به بهبود معنادار در آزمون پلانک بوده است.

علاوه بر این، بهبود مشاهده شده در ثبات هسته مرکزی می‌تواند پیامدهای مهمی فراتر از افزایش صرف استقامت عضلانی داشته باشد. از دیدگاه بیومکانیکی، هسته مرکزی قوی و واکنشگرایه عنواین یک پیوند انتقال نیرو بین اندام تحتانی و فوقانی عمل می‌کند. در والیبالیست‌های مانند پرش برای اسپک یا دفاع، و فرود امن پس از آن، وابستگی شدیدی به انتقال بهینه نیرو از طریق یک هسته ثابت دارند. اختلال در این انتقال

نیرو، که ممکن است در اثر بی‌ثباتی مج پا و الگوهای جبرانی ایجاد شود، می‌تواند هم کارایی حرکت و هم خطر آسیب‌های ثانویه به زانو یا کمر را افزایش دهد (Zemková, 2024). از این منظر، بهبود ثبات هسته مرکزی از طریق RNT ممکن است به بازگرداندن مکانیک حرکت بهینه در حین پرش و فرود کمک کند. این فرضیه با مطالعه Santos و همکاران (۲۰۲۳) همسو است که گزارش کردنده بهبود در شاخص‌های ثبات مرکزی پس از یک دوره تمرینی، با کاهش نمرات خطر آسیب در تست‌های پرش عملکردی در بازیکنان بسکتبال همراه بود. بنابراین، می‌توان استدلال کرد که تمرینات RNT ممکن است با هدف قرار دادن یک حلقه ضعیف در زنجیره جنبشی (هسته)، به کاهش استرس وارده بر حلقه دیگر (مج پا) و در نتیجه کمک به چرخه بهبود و پیشگیری از آسیب کمک کند.

در تحلیل محدودیت‌های این پژوهش باید به چند نکته توجه شود. نخست، نمونه‌گیری از جامعه آماری خاص (والیالیست‌های دختر لیگ آزاد قم با بی‌ثباتی مزمن مج پا) موجب می‌شود که تعیین‌پذیری نتایج به سایر جمعیت‌های ورزشی (مانند مردان، ورزشکاران سطوح رفاهی‌تر، یا ورزش‌های غیرپرشی) با احتیاط صورت گیرد. دوم، اگرچه آزمون پلانک یک ابزار معابر و متدالوی برای سنجش استقامت ایستای عضلات هسته است، اما ماهیت پویا و واکنشی تمرینات RNT ممکن است با ابزارهای ارزیابی پویاتر از ثبات هسته (مانند تست‌های تعادلی عملکردی یا ارزیابی با صفحه‌های نیرو در حین انجام تکلیف) بهتر سنجیده شود. سوم، این مطالعه پیامدهای مداخله را بلافاصله پس از پایان دوره تمرینی اندازه‌گیری کرد و فاقد پیگیری بلندمدت برای بررسی ماندگاری اثرات و نیز تأثیر آن بر نرخ واقعی آسیب‌های مج پا در فصل مسابقات است.

با در نظر گرفتن این محدودیت‌ها، یافته‌های این پژوهش دارای مفاهیم عملی ارزشمندی برای مریبان، فیزیوتراپیست‌ها و متخصصان حرکات اصلاحی است. پروتکل تمرینی RNT به کار رفته، که می‌تواند با حداقل تجهیزات (باند کشی، بوسوبال) اجرا شود، یک راهکار عملی و مفرونه به صرفه برای گنجاندن در برنامه‌های گرم کردن، تمرین قدرتی یا دوره توانبخشی ورزشکاران مبتلا به CAI ارائه می‌دهد. تأکید این تمرینات بر تصحیح الگوهای حرکتی در شرایط شبیه‌واقعی، آن را به مداخله‌ای جذاب برای ورزشکاران تبدیل می‌کند و احتمال پاییندی به برنامه را افزایش می‌دهد. برای تحقیقات آینده، پیشنهاد می‌شود که تأثیر ترکیب RNT با سایر روش‌ها (مانند تمرینات پلابیومتریک یا آموزش آگاهی از حرکت) مورد بررسی قرار گیرد. همچنین، انجام مطالعات طولی مدت با گروه‌های بزرگ‌تر و متنوع‌تر از ورزشکاران برای تعیین تأثیر این تمرینات بر معیارهای نهایی مهم‌تری مانند میزان بروز آسیب، عملکرد ورزشی خاص (مانند ارتفاع پرش یا دقت سرویس)، و کیفیت زندگی مرتبط با سلامت، گام بعدی ضروری در تدبیت جایگاه RNT در پروتکل‌های جامع پیشگیری و توانبخشی آسیب‌های مج پا خواهد بود.

نتیجه گیری

بر اساس یافته‌های پژوهش حاضر، تمرینات RNT می‌تواند به عنوان یک رویکرد تمرینی مؤثر برای بهبود ثبات هسته مرکزی در والیالیست‌های مبتلا به بی‌ثباتی مج پا مورد استفاده قرار گیرد. بنابراین، با توجه به نتایج بدست آمده از این تحقیق، والیالیست‌های دارای بی‌ثباتی مج پا می‌توانند از تمرینات عصبی عضلانی واکنشی در جهت بهبود سریع تر ثبات هسته مرکزی استفاده کنند و آن را جزئی از برنامه تمرینی روزمره خود قرار دهند؛ بنابراین پیشنهاد می‌شود که فدراسیون‌ها، باشگاه‌ها، مریبان، امدادگران ورزشی و فیزیوتراپیست‌ها از این روش تمرینی در کنار اقدامات پزشکی و توانبخشی فیزیکی، به عنوان راهکارهای درمانی بهره بگیرند. استفاده از این روش می‌تواند نقش مؤثری در پیشگیری از آسیب مجدد و تسریع روند بازگشت ورزشکاران به تمرین، رقابت و حضور فعال در صحنه‌های ورزشی ایفا کند.

ملاحظات اخلاقی

در اجرای پژوهش ملاحظات اخلاقی مطابق با دستورالعمل کمیته اخلاق دانشگاه قم در نظر گرفته شده است.

حامی/حامیان مالی

این مقاله هیچ گونه کمک مالی از سازمان تامین کننده مالی در بخش‌های عمومی و دولتی، تجاری، غیرانتفاعی دانشگاه یا مرکز تحقیقات دریافت نکرده است.

مشارکت نویسنده‌گان

تمام نویسنده‌گان در آماده سازی مقاله مشارکت یکسان داشته اند.

عارض منافع

بنابر اظهار نویسنده‌گان، این مقاله تعارض منافع ندارد.

تشکر و قدردانی

بدینوسیله از زحمات اساتیدی که در انجام این مطالعه کمال همکاری را داشته‌اند، سپاسگزاری می‌گردد.

References

1. Lundberg, A., Goldie, I., Kalin, B., Selvik, G., Kinematics of the ankle/footcomplex: plantar flexion and dorsiflexion, *Foot Ankle*, 1989;9: 194-200.
2. Fatahi A, Dehnavi M. Comparison the Effect of Neuromuscular Exercises With Other Training Modalities on Balanceand Motor Function in People With Chronic Ankle Instability: A systematic Review and Meta-Analysis. [(Persian)]. *Archives of Rehabilitation*. 2022; 23(3):310-333. <https://doi.org/10.32598/RJ.23.3.3425.3>.
3. Guilherme Augusto Moreira Silva1, Ruan Kaique de Oliveira1, Ana Maria de Castro1, Nathália Fernandes da Silva1, Bruna Almeida Pires Franco de Oliveira2, Maria Eduarda Moreira Lino1, Rodrigo Franco de Oliveira1 by Effectiveness of proprioceptive training in athletes with andwithoutankleinstability:systematicreview. <https://doi.org/10.17784/mtprehabjournal.2022.20.1277>
4. Arastoo A, Goharpey S, Zahednejad S, Shaterzadeh YM, RasouliP. [Effects of star excursion balance training on ankle functionalstability via agility hop test in patients with unilateralchronicankleinstability (Persian)]. *Jundishapur ScientificMedical Journal*. 2011; 383-9310(4).
5. Kisner C, Colby LA. Therapeutic exercise: foundations and tech-niques. 5th edition. Philadelphia: F.A. Davis Company; 2007, pp:777-9.
6. Esteki P, Ghasemi Gh, Sadeghi M. [Effect of 8 weeks Slide Board Exercises onFunctional Performance in Female Basketballwith Chronic Ankle Instability (Persian)]. *Scientific Journal of Rehabilitation Medicine*. 2024; 13(4):758-769. <https://dx.doi.org/10.32598/SJRM.13.4.3183>
7. <https://dx.doi.org/10.32598/SJRM.13.4.3183>
8. McKeon PO, Hertel J. (2008). Systematic review of postural control and lateral ankleinstability, part I: can deficits be detected with instrumented testing?. *Journal of athletic training*. 43(3):293-3304.
9. Asadi M, Mino-Nejad H, Alizadeh MH. [Effect of Eight Weeks of AI- Chi exercises on Static, Dynamic Balance, Proprioceptionand Performance in Elite Female Athletes with Functional Ankle Instability (Persian)]. *Scientific Journal of Rehabilitation Medicine*.2023; 12(3):504-519. <https://dx.doi.org/10.32598/SJRM.12.3.9>
10. Garrett Caughlan, ET. A 4-week neuromuscular training program on gait pattern at the anklejoint. *J Athl Train*. 2007; 42(1):51-59.
11. Abdolrasoul Daneshjoo, Asistant Professor of Sport Biomechanics and Corrective Exercise,Department of Physical Education and Sports Science, East Tehran Branch, Islamic Azad University, Tehran, Iran.(1399)
12. Voight, M. L., & Cook, G. (1996). Clinical application of closed kinetic chainexercise. *Journal of Sport Rehabilitation*, 5(1), 25-44.
13. Abdolrasoul Daneshjoo, Asistant Professor of Sport Biomechanics and Corrective Exercise,Department of Physical Education and Sports Science, East Tehran Branch, Islamic Azad University, Tehran, Iran.(1399)
14. Guido Jr, J. A., & Stemm, J. (2007). Reactive neuromuscular training: a multi-levelapproach to rehabilitation of the unstable shoulder. *North American journal of sportsphysical therapy: NAJSP*, 2(2), 97.
15. Loutsch, R. A., Baker, R. T., May, J. M., & Nasypyany, A. M. (2015). Reactiveneuromuscular training results in immediate and long term improvements inmeasuresofhamstring flexibility: A case report. *International journal of sports physical therapy*, 10(3),371.
16. Harrison, B. C., & Hart, J. M. (2010). Reactive neuromuscular training in low-back painrehabilitation: Part one. *Athletic Training and Sports Health Care*, 2(6), 2534-
17. Zeigel, A. K. (2017). An Examination of the Effectiveness of Novel Manual Therapies toImprove Patient Care: A Dissertation of Clinical Practice Improvement. University ofIdaho.
18. Moradi K, Minoonejad, H. Rajabi R. The immediate effect of core stability exercises on postural sway in athletes with functional ankle instability. *J Rehab Med*. 2015; 4(3): 101-110.