

The Role of Carbohydrate-Based Nutritional Supplements in Enhancing Soccer Players' Performance: A Synthesis Study

Zohreh Shannazari ¹ , Amir Hossein Azizi Ammarati ²

- Assistant Professor, Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran. Email: z.shanazariz@spr.ui.ac.ir ORCID: **0000-0003-0429-7975** (Corresponding Author)
- M.Sc. Student in Exercise Physiology and Sports Nutrition, Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran. Email: amirhossin.azizi2022@gmail.com

Article Info

Article type:
Research Article

Article history:
Received 11 July 2025
Received in revised form
24 July 2025
Accepted 12 Sep 2025
Available online 23 Sep
Jun 2025

Keywords:

Evidence synthesis; Carbohydrate; Sports nutrition; Soccer performance; Repeated high-intensity running.

ABSTRACT

Objective: Carbohydrates are a key energy source for the intermittent and high-intensity demands of football, helping maintain muscle glycogen, stabilize blood glucose, and delay fatigue. However, the effectiveness of different carbohydrate strategies—including pre-exercise intake, in-game supplementation, post-exercise recovery, and carbohydrate mouth rinsing—remains debated. This review aimed to synthesize evidence from the past decade on how carbohydrate ingestion influences physical capacity, anaerobic output, technical performance, and recovery in football players.

Methods: Twenty-five studies (2015–2025) involving any carbohydrate intervention and reporting football-related performance outcomes were analyzed. Data were systematically extracted and qualitatively synthesized to identify common patterns, methodological differences, and plausible physiological mechanisms.

Results: Most carbohydrate strategies were linked with performance benefits. Pre-exercise intake improved repeated high-intensity running and reduced late-match decline. In-exercise carbohydrate beverages supported anaerobic output and intermittent running. Carbohydrate mouth rinsing, even without ingestion, appeared to modulate central pathways, reduce perceived exertion, and help maintain technical skills under fatigue. Post-exercise intake enhanced glycogen resynthesis and readiness for subsequent sessions. Nonetheless, heterogeneity across protocols, small samples, limited female and youth representation, and few long-term field studies remain major limitations.

Conclusion: Timely and targeted carbohydrate intake is an effective nutritional approach to enhance performance and recovery in football, supporting high-intensity work capacity, technical precision, and cognitive function. More large-scale and comparative studies are required to refine guidelines across genders and performance levels.

Cite this article: Shannazari, Z; Azizi Ammarati, A. Sh., *The Role of Carbohydrate-Based Nutritional Supplements in Enhancing Soccer Players' Performance: A Synthesis Study*. *Applied Research in Sports Nutrition and Exercise Science*, 2025;2(3):28-45. [10.22091/arsnes.2024.11878.1049](https://doi.org/10.22091/arsnes.2024.11878.1049)

© The Author(s).

DOI: [10.22091/arsnes.2024.11878.1049](https://doi.org/10.22091/arsnes.2024.11878.1049)

Publisher: University of Qom.

Extended Abstract

Introduction

Soccer is a team sport characterized by an intermittent and variable-intensity activity pattern, demanding that players repeatedly execute short-term, high-intensity explosive movements over ninety minutes, imposing a significant physiological load on energy production systems. The repetition of these bursts not only creates high metabolic demand but also increases the likelihood of technical errors and diminished skill accuracy under fatigue conditions. From a metabolic perspective, soccer is considered a "hybrid" activity, combining rapid ATP production via phosphocreatine and anaerobic glycolysis for intense actions with reliance on aerobic pathways for recovery periods, a pattern leading to substantial muscle glycogen depletion. This energy consumption pattern highlights players' high dependence on glycogen stores and, in many cases, the need for continuous or periodic glucose supply through nutritional interventions during matches. Glycogen depletion is associated with reduced force production capacity, decreased frequency of high-intensity movements in the second half, and impaired calcium regulation in muscle fibers, which are among the most important components of peripheral fatigue. These changes can affect muscle functional flexibility and the ability to perform precise technical-motor tasks accurately. Maintaining plasma glucose through carbohydrate intake can delay central fatigue and preserve cognitive functions critical to match performance—including reaction speed, decision-making, and concentration—in the final stages, which is essential for

proper execution of technical skills. Evidence suggests these cognitive effects may occur even without complete muscle glycogen resynthesis, highlighting the importance of carbohydrate timing and type. Biochemically, carbohydrates—particularly in the form of muscle glycogen and blood glucose—are the primary fuel for high-intensity activities; by preserving glycogen stores and providing immediate glucose, they facilitate ATP production and reduce the onset of fatigue. Therefore, the choice of carbohydrate source and form (rapid absorption or sustained release) can have different implications for match performance. Intervention studies have reported improvements in physical, technical, and cognitive indices following carbohydrate consumption before, during, or after matches; however, the extent and consistency of these effects vary depending on the carbohydrate source and form, dosage, and timing of the intervention. The use of different sources such as maltodextrin, isomaltulose, fruits, and various forms like drinks, gels, or whole foods makes direct comparison of findings challenging. Furthermore, heterogeneity in sample characteristics (skill level, gender, age), measurement methods, and study design complicates result interpretation. Differences in metabolic and functional responses between professional and amateur players or between men and women indicate that subgroup analyses are essential to identify more precise response patterns and develop more practical recommendations. The lack of a coherent quantitative synthesis that includes cumulative effect estimates, between-group analyses, and dose-response

models represents a significant gap in the existing literature, necessitating a comprehensive study. Particularly, the absence of dose-response modeling and simultaneous investigation of physiological and performance indices hinders the development of practical and precise recommendations for match conditions. The present study aims to estimate the cumulative effect size of carbohydrate interventions on three categories of outcomes—physical, technical, and cognitive performance—and to examine the role of athlete level, intervention type, and consumption timing in moderating these effects; it is an effort to provide an evidence-based framework for nutritional recommendations. This synthesis is expected to contribute to standardizing measurement and reporting methods while laying the groundwork for developing practical nutritional protocols for teams and sports performance specialists. The scope of this review includes controlled intervention studies on adolescent to professional soccer players and a range of biomarker, physiological, performance, and cognitive outcomes, providing an organized basis for team guidelines and prioritizing future research directions. Overall, this research seeks to fill existing theoretical gaps while providing a practical framework for designing and implementing evidence-based carbohydrate interventions in the competitive environment.

Methods

In this synthesis study, a systematic process in accordance with the principles of standard analytical reviews was employed to integrate scientific evidence related to the effects of carbohydrate supplements on soccer players' performance. The stages of search, selection, data extraction, and quality assessment of studies were designed and implemented according to accepted frameworks for evidence-based reviews. A comprehensive

and systematic search was conducted in reputable scientific databases including ISI Web of Science, Scopus, PubMed, and Cochrane Library from 2020 to 2025. The study selection process was modeled as follows: Inclusion criteria comprised studies conducted on humans, specifically soccer players (adolescent to professional), investigating the effects of any carbohydrate intervention, including pre-match high-carbohydrate meals (HCHO), consumption of carbohydrate gels or drinks during matches, carbohydrate mouth rinsing (CHO mouth-rinse), carbohydrate periodization, or selection of carbohydrate sources with different glycemic indices (Low-GI / Pulse-based). Studies had to measure at least one physiological, performance, or cognitive index relevant to soccer match-play and employ one of the following designs: randomized controlled trials (Parallel / Crossover), experimental intervention studies, or observational studies with quantitative data related to CHO intake patterns in soccer players. Theses and field studies with valid quantitative data were also included to strengthen the body of evidence. Exclusions comprised non-human studies, purely theoretical articles, or those describing protocols without performance data. Theses and field studies with suitable quantitative data were included as supplementary evidence. The selection process involved evaluating each study based on design level and reporting quality (particularly pre-test nutritional control, blinding, biochemical sampling) and applying descriptive weighting in thematic analyses (stronger evidence = several convergent RCTs with similar results; weaker evidence = case studies or studies with very small samples or non-randomized designs). Methodological and practical limitations of the reviewed studies, which could affect interpretation and generalization of results, included significant

heterogeneity in protocols (wide differences in dosage, carbohydrate type/form, timing, and nutritional state), variable study quality (many RCTs with very small sample sizes or use of laboratory-simulated protocols reducing external validity), frequent lack of direct biochemical measurements or muscle biopsies (making proposed mechanisms largely inferential), gender and age bias (focus on adult males with a paucity of research on women and adolescents limiting generalizability), and risk of reporting errors in observational studies (use of FFQs or dietary records susceptible to recall and misreporting bias).

Results

The synthesis of findings is presented across three key thematic areas derived from the analyzed studies. The first theme encompasses the physiological and central neural mechanisms through which carbohydrate exerts its effects. Carbohydrate interventions primarily function by maintaining blood glucose availability and preventing hypoglycemia, which is particularly crucial during prolonged or high-intensity intermittent exercise. This mechanism is moderated by the athlete's nutritional state (fed vs. fasted) and match intensity. A second critical mechanism is the preservation of muscle glycogen stores, thereby delaying depletion and sustaining power output during high-intensity efforts, with the magnitude of this effect influenced by training level and exercise load. Carbohydrate intake can also modulate fuel oxidation, potentially reducing the respiratory exchange ratio (RER) and promoting glycogen sparing through increased fat utilization, an effect sensitive to the type and timing of carbohydrate consumed. Furthermore, a distinct mechanism is identified for carbohydrate mouth rinsing (CHO-MR), which involves the stimulation of oral receptors leading to

activation of reward/motor pathways in the brain, thereby reducing perceived exertion without systemic absorption; this effect appears most pronounced in fasted states or specific match structures.

The second thematic area details the functional, metabolic, and demographic effects observed. Performance outcomes consistently indicate that targeted carbohydrate consumption helps mitigate the performance decline typically seen in the second half of matches. Strategies combining a high-carbohydrate pre-match meal with 30–60 grams of carbohydrate at halftime are frequently associated with improved power output in the final minutes and reduced decrements in sprint speed. Regarding technical skills, interventions such as CHO-MR or gel consumption prior to extra-time periods have been shown to help maintain passing accuracy and dribbling quality, though these effects are often attenuated in already well-fueled athletes. From a metabolic and health perspective, diets incorporating low-glycemic index foods and pulses have demonstrated benefits in improving lipid profiles, especially among female players, without necessarily translating to direct performance enhancements in short-term studies. Recovery and fatigue management are positively influenced by carbohydrate periodization strategies, such as a sequence of low intake followed by loading phases, which are linked to reduced metabolic cost and increased output in subsequent sessions. Effects on cardiorespiratory indices like $VO_{2\text{max}}$ are heterogeneous, showing limited improvements primarily in short-term studies or small samples. Demographic analyses reveal that response to carbohydrate intervention is dependent on athlete level and baseline nutritional status, with non-elite players or those with habitually low carbohydrate intake typically showing

greater responsiveness, whereas elite athletes often require more personalized approaches. Preliminary evidence also points to potential gender- and age-specific metabolic differences, underscoring the need for more targeted research in women and adolescent populations.

The third area provides a practical synthesis of carbohydrate intake protocols, detailing dosage, timing, and practical considerations. For pre-match nutrition, consuming 1–1.5 grams of carbohydrate per kilogram of body weight (or approximately 200 grams of CHO in a ~1000 kcal meal) 2–4 hours before a match is widely supported as an effective strategy to optimize glycogen availability. During match play, intake of 30–60 grams of carbohydrate at halftime, either as a single dose or split (e.g., 30 grams pre-match and 30 grams at halftime), is consistently linked with better second-half performance. For high intake rates during play, consumption of up to 82 grams per hour using formulations like a 2:1 maltodextrin-to-fructose ratio can enhance total absorption and minimize gastrointestinal discomfort, though performance benefits in already well-fueled elite players may be marginal. Carbohydrate mouth rinsing protocols typically involve swishing 25–50 ml of a 6–10% carbohydrate solution for 5–10 seconds, repeated at the start of halves or before high-intensity periods; this strategy is most effective in fasted states and shows diminished returns in fed conditions. Carbohydrate periodization, involving cycles of low intake followed by loading phases leading into competition (e.g., 1–1.5 g/kg on low days, 4.5–6.5 g/kg during loading, and up to 7.5 g/kg on match day), is highlighted as a method to enhance metabolic adaptation and readiness. A key practical consideration across all protocols is dose-dependent gastrointestinal tolerance, with higher single doses potentially causing distress, necessitating individualized practice

and acclimatization.

Discussion

The consolidated evidence indicates that carbohydrate-based interventions can serve as a multifaceted nutritional strategy to enhance resilience, technical performance, and the ability to sustain match output in soccer. Pre-match high-carbohydrate meals, targeted in-game carbohydrate intake, carbohydrate mouth rinsing, and periodization approaches can yield beneficial effects under appropriate conditions. However, the magnitude and likelihood of these effects are significantly dependent on the type of intervention, baseline nutritional status, the structure of activity (full match vs. small-sided games), and the player's fed or fasted state. Studies with more rigorous designs—particularly those standardizing pre-test nutrition or implementing carbohydrate periodization in professional players—provide the most reliable evidence, reporting improvements in endurance and maintenance of certain performance indices. In contrast, the efficacy of CHO-MR is heterogeneous; positive effects are primarily observed in semi-fasted states or during full-pitch protocols, whereas in fed states or within complex, intermittent soccer-specific drills, clear effects are less consistently reported.

From a mechanistic perspective, three primary pathways for carbohydrate effects are proposed: (1) preservation of muscle glycogen and provision of rapid glucose during prolonged or repeated high-intensity activity; (2) optimization of fuel oxidation patterns with optimal timing; and (3) central ergogenic effects arising from oral receptor stimulation. However, due to limitations in direct metabolic measurements in a significant portion of the research, mechanistic certainty remains constrained. Demographic analysis of the evidence reveals that players with insufficient baseline

carbohydrate intake, as well as non-elite players, derive the greatest benefit from these interventions. Conversely, well-nourished elite players often show a more attenuated response to high-dose in-game carbohydrate and may benefit more from periodized and individualized intake strategies. Preliminary evidence also suggests potential gender differences in metabolic responses to certain low-glycemic carbohydrate sources, although larger trials are needed for conclusive findings.

The findings point to several practical, evidence-supported approaches for carbohydrate application in soccer. A pre-match meal providing 1–1.5 g/kg of carbohydrate 2–4 hours before competition is consistently advocated to ensure adequate fuel availability. Targeted intake of 30–60 grams of carbohydrate at halftime is repeatedly associated with reduced second-half performance decline. While higher in-game intake rates (up to ~82 g/h) are generally well-tolerated, they may not yield significant performance gains in athletes who are already optimally fueled pre-match. Carbohydrate mouth rinsing can offer ergogenic benefits in specific contexts—particularly when fluid ingestion is difficult or the athlete is in a semi-fasted state—though its impact is typically less pronounced than actual carbohydrate ingestion and negligible in fed conditions. For elite athletes, carbohydrate periodization strategies appear most effective when implemented under the supervision of sports nutrition professionals. Despite the existence of several well-designed randomized controlled trials, a substantial portion of the literature is based on small samples, simulated conditions, or incomplete reporting. Consequently, the overall quality of evidence across many domains is rated as "moderate" to "low." A more consistent and relatively stronger convergence of evidence exists for specific practical questions, such as

the efficacy of carbohydrate periodization in professional players and the impact of halftime carbohydrate gel intake on reducing performance decrements. Nevertheless, the need for larger field-based studies, stringent pre-test nutritional control, and the incorporation of precise biochemical markers remains evident to increase certainty in these areas. Significant heterogeneity in protocols, forms of delivery, and participants' nutritional state persists. Many studies also suffer from small sample sizes, limited statistical power, and a lack of biochemical assessments, leading to the overall "moderate" confidence rating in the evidence.

Conclusion

In summary, carbohydrate-based nutritional strategies—including pre-match loading, targeted in-game intake, and nutritional periodization—can serve as beneficial tools for enhancing endurance and certain performance components in soccer players, particularly under conditions of inadequate habitual carbohydrate intake or during prolonged/sequential match play. The most robust practical recommendations supported by the current synthesis include the consumption of a pre-match meal (1–1.5 g/kg CHO) 2–4 hours before competition and the intake of 30–60 grams of carbohydrate at halftime to mitigate second-half performance decline. Carbohydrate mouth rinsing may provide a practical alternative in situations where fluid ingestion is challenging, though its effects are generally subordinate to actual carbohydrate consumption. For elite athletes, individualized and periodized approaches overseen by sports nutrition experts are likely to yield the greatest benefit. Ultimately, due to methodological limitations and persistent protocol heterogeneity, the formulation of precise recommendations must be grounded in personalization and implemented under the guidance of team nutrition and medical staff. Future research should prioritize large-scale,

longitudinal field studies with diverse populations (including women and youth), standardized protocols, and integrated physiological and performance measurements to refine evidence-based guidelines and optimize the application of carbohydrate nutrition in soccer.

Keywords: Evidence synthesis; Carbohydrate; Sports nutrition; Soccer performance; Repeated high-intensity running.

Ethical Considerations

In conducting the research, ethical considerations were taken into account in accordance with the guidelines of the Ethics

Committee of the Islamic Azad University.

Funding/Financial Support

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors' Contributions

Authors contributed equally in preparing this article.

Conflict of Interest

The authors declared no conflict of interest.

Acknowledgments

We express our deepest gratitude to all participants in this study and those who assisted us during the research process.

نقش مکمل‌های تغذیه‌ای کربوهیدراتی در بهبود عملکرد فوتبالیست‌ها: یک مطالعه سنتزپژوهی

زهره شانظری^۱ ، امیرحسین عزیزی عمارتی^۲

۱. نویسنده مسئول، استادیار، گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه اصفهان، اصفهان، ایران.
۲. دانشجوی کارشناسی ارشد فیزیولوژی ورزشی و تغذیه ورزشی، گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه اصفهان، اصفهان، ایران.

اطلاعات مقاله

نوع مقاله:	۱۴۰۴/۰۴/۲۰
مقاله پژوهشی	۱۴۰۴/۰۵/۲
تاریخ دریافت:	۱۴۰۴/۰۶/۲۱
تاریخ بازنگری:	۱۴۰۴/۰۷/۰۱
تاریخ پذیرش:	۱۴۰۴/۰۷/۰۱
تاریخ انتشار:	۱۴۰۴/۰۷/۰۱
چکیده	<p>هدف: کربوهیدرات‌ها نقش مهمی در حفظ گلیکوژن، ثبات قند خون و جلوگیری از افت عملکرد در فعالیت‌های پرفسنال فوتبال دارند. با وجود راهبردهای مختلف مصرف کربوهیدرات، میزان اثربخشی هر کدام هنوز مورد بحث است. این مطالعه با هدف مرور شواهد ده سال اخیر درباره تأثیر انواع پروتکل‌های مصرف کربوهیدرات بر عملکرد جسمانی، مهارت‌های فنی و ریکاوری فوتبالیست‌ها انجام شد.</p> <p>روش بررسی: ۲۵ مطالعه منتشرشده بین ۲۰۱۵ تا ۲۰۲۵ که از مداخلات کربوهیدراتی استفاده کرده و پیامدهای عملکردی را گزارش کرده بودند، از طریق تحلیل کیفی سنتز شدند.</p> <p>یافته‌ها: بیشتر راهبردهای مصرف کربوهیدرات موجب بهبود دوهای تکراری، حفظ توان بی‌هوایی و کاهش افت عملکرد می‌شوند. نوشیدنی‌های کربوهیدراتی در حین بازی و شستشوی دهان با محلول کربوهیدراتی به حفظ مهارت‌های فنی و کاهش ادراک تلاش کمک می‌کنند. مصرف پس از فعالیت نیز بازسازی گلیکوژن را تسريع می‌کند. ناهمگنی پروتکل‌ها و کمبود مطالعات بر زنان و رده‌های پایه از محدودیت‌هاست.</p> <p>نتیجه‌گیری: مصرف هدفمند و زمان‌بندی شده کربوهیدرات راهبردی مؤثر برای بهبود عملکرد و ریکاوری در فوتبال حرفه‌ای است؛ اما برای ارائه توصیه‌های دقیق‌تر، پژوهش‌های گسترش‌دار لازم است.</p>
کلیدواژه‌ها:	ستزپژوهی، کربوهیدرات، تغذیه ورزشی، عملکرد فوتبالیست‌ها؛ دویدن تکرارشونده با شدت بالا

استناد: شانظری، زهره؛ عزیزی عمارتی، امیرحسین. نقش مکمل‌های تغذیه‌ای کربوهیدراتی در بهبود عملکرد فوتبالیست‌ها: یک مطالعه سنتزپژوهی. پژوهش‌های کاربردی در تغذیه ورزشی و علم تمرین، ۴، ۲: ۴۵-۲۸. (۳).

DOI: [10.22091/arsnes.2024.11878.1049](https://doi.org/10.22091/arsnes.2024.11878.1049)

© نویسنده‌ان.

ناشر: دانشگاه قم.

فوتبال ورزشی تیمی با الگوی فعالیت متناوب و شدت متغیر است که بازیکنان را طی ۹۰ دقیقه به اجرای مکرر حرکات انفجاری کوتاه‌مدت و پرفشار وادار می‌کند؛ موضوعی که بازیکنان را طی ۹۰ دقیقه به اجرای مکرر حرکات انفجاری کوتاه‌مدت و متابولیک بالای ایجاد می‌کند، بلکه احتمال روز طنایی تولید انرژی تحمیل می‌نماید. تکرار این انفجارها نه تنها تقاضای از منظر متابولیک، فوتبال یک فعالیت «هیبریدی» محسوب می‌شود که در آن تأمین سریع ATP از طریق فسفوکراتین و گلیکولیز بی‌هوایی برای حرکات شدید و اتکا به مسیر هوایی برای دوره‌های بازیابی تلفیق می‌گردد؛ الگویی که به تخلیه قابل توجه گلیکوژن عضلانی منجر می‌شود.

این الگوی مصرف انرژی وابستگی بالای بازیکنان را به ذخایر گلیکوژن و در بسیاری موارد نیاز به تأمین مداوم یا دوره‌ای گلوکز از طریق مداخلات تغذیه‌ای در طول مسابقه برجسته می‌کند (۱، ۲، ۳، ۴، ۵).

تخلیه گلیکوژن با کاهش توان تولید نیرو، افت فراوانی حرکات با شدت بالا در نیمه دوم مسابقه و اختلال در تنظیم کلسیم فیبرهای عضلانی مرتبط است؛ عواملی که از مهم‌ترین مؤلفه‌های خستگی محیطی به شمار می‌روند. این تغییرات می‌توانند انعطاف‌پذیری عملکرد عضلات و توانایی اجرای دقیق وظایف تکنیکی- حرکتی را تحت تأثیر قرار دهند. (۶، ۷).

حفظ گلوکز پلاسمایی از طریق مصرف کربوهیدرات قادر است خستگی مرکزی را به تأخیر اندازد و عملکردهای شناختی حساس به مسابقه - از جمله سرعت واکنش، تصمیم‌گیری و تمرکز - را در مراحل پایانی حفظ کند؛ امری که برای اجرای مناسب مهارت‌های تکنیکی ضروری است. شواهد نشان می‌دهد که این اثرات شناختی ممکن است حتی بدون بازسازی کامل گلیکوژن عضلانی نیز بروز یابند، که اهمیت زمان‌بندی و نوع کربوهیدرات مصرفی را برجسته می‌سازد (۱، ۷، ۸).

از منظر بیوشیمیایی، کربوهیدرات‌ها - به‌ویژه در قالب گلیکوژن عضلانی و گلوکز خون - سوخت اصلی فعالیت‌های شدید هستند و با حفظ ذخایر گلیکوژن و تأمین گلوکز فوری، تولید ATP را تسهیل کرده و بروز خستگی را کاهش می‌دهند. بنابراین، انتخاب منبع و فرم کربوهیدرات (جذب سریع یا آزادسازی پایدار) می‌تواند پیامدهای متفاوتی برای عملکرد مسابقه به همراه داشته باشد (۷، ۹، ۱۰).

مطالعات مداخله‌ای بهبودهایی در ساختارهای فیزیکی، تکنیکی و شناختی پس از مصرف کربوهیدرات پیش، حین یا پس از مسابقه گزارش کرده‌اند؛ با این حال، وسعت و پایداری این اثرات بسته به منبع و شکل کربوهیدرات، میزان دوز و نحوه زمان‌بندی مداخله متفاوت است. استفاده از منابع مختلف مانند مالتودکستربین، ایزومالتولوز، میوه‌ها و شکل‌های گوناگون نظیر نوشیدنی، ژل یا غذای کامل، مقایسه مستقیم یافته‌ها را دشوار می‌سازد (۱، ۲، ۱۳، ۱۲، ۱۱، ۸).

علاوه بر این، ناهمگونی در ویژگی‌های نمونه (سطح مهارت، جنسیت، سن)، روش‌های اندازه‌گیری و طراحی مطالعه، تفسیر نتایج را پیچیده می‌کند. تفاوت واکنش‌های متابولیک و عملکردی میان بازیکنان حرفه‌ای و آماتور یا میان مردان و زنان نشان می‌دهد که تحلیل‌های زیرگروهی ضروری است تا الگوهای پاسخ دقیق‌تر مشخص و توصیه‌های کاربردی‌تری تدوین شود (۲، ۴، ۱۴).

کمودی یک ترکیب‌بندی کمی منسجم که شامل برآورد اثر تجمعی، تحلیل‌های میان‌گروهی و مدل‌های دوز-پاسخ باشد، خلأی مهمن در ادبیات موجود است و انجام یک مطالعه جامع را ایجاد می‌کند. به‌ویژه فقدان مدل‌سازی دوز-پاسخ و نیز بررسی همزمان شاخص‌های فیزیولوژیک و عملکردی مانع از تدوین توصیه‌های کاربردی و دقیق برای شرایط مسابقه شده است (۲، ۱۴).

هدف مطالعه حاضر، برآورد اندازه اثر تجمعی مداخلات کربوهیدراتی بر سه دسته خروجی - عملکرد فیزیکی، تکنیکی و شناختی - و همچنین بررسی نقش سطح ورزشکار، نوع مداخله و زمان‌بندی مصرف در تعديل این اثرات است؛ تلاشی برای فراهم‌آوردن چارچوبی مبتنی بر شواهد برای توصیه‌های تغذیه‌ای. انتظار می‌رود که این سنتز پژوهی ضمن کمک به استانداردسازی روش‌های اندازه‌گیری و گزارش‌دهی، زمینه‌ساز تدوین پروتکل‌های تغذیه‌ای کاربردی برای تیم‌ها و متخصصان حوزه عملکرد ورزشی باشد (۵، ۱۵).

دانمه این بررسی شامل مطالعات مداخله‌ای کنترل شده در فوتبالیست‌های نوجوان تا حرفاًی و طیفی از خروجی‌های بیومارکری، فیزیولوژیک، عملکردی و شناختی است و می‌تواند مبنایی سازمان یافته برای دستورالعمل‌های تیمی و اولویت‌بندی پژوهش‌های آینده ارائه کند. در مجموع، این پژوهش می‌کوشد ضمن پر کردن شکاف‌های نظری موجود، چارچوبی عملی برای طراحی و اجرای مداخلات کربوهیدراتی مبتنی بر شواهد در محیط مسابقه فراهم آورد (۵، ۱۵).

روش

در این سنتزپژوهی، به منظور تلفیق شواهد علمی مرتبط با اثرات مکمل‌های کربوهیدراتی بر عملکرد فوتبالیست‌ها، یک فرآیند نظاممند مطابق اصول مروهای تحلیلی استاندارد به کار گرفته شد. مراحل جستجو، انتخاب، استخراج داده‌ها و ارزیابی کیفیت مطالعات مطابق چارچوب‌های پذیرفته شده در مروهای مبتنی بر شواهد طراحی و اجرا گردید.

جستجو و انتخاب مطالعات

یک جستجوی نظاممند و جامع در پایگاه‌های داده معتبر علمی شامل Cochrane، PubMed، Scopus، ISI Web of Science و Library از ۲۰۲۰ تا ۲۰۲۵ انجام شد.

روند انتخاب مطالعات به شکل زیر مدل‌سازی شده است:

معیارهای ورود

مطالعاتی انتخاب شدند که:

۱. روی انسان و بهویژه بازیکنان فوتبال (نوجوان تا حرفه‌ای) انجام شده باشند.

اثرات هرگونه مداخله کربوهیدراتی را بررسی کرده باشند، شامل: وعده‌های پیش‌مسابقه پرکربوهیدرات (HCHO)، مصرف ژل یا نوشیدنی کربوهیدراتی در حین مسابقه، دهان‌شویه کربوهیدراتی (CHO mouth-rinse) دوره‌بندی کربوهیدرات، انتخاب منابع کربوهیدرات با شاخص گلایسمی متفاوت (Low-GI / Pulse-based).

۲. حداقل یک شاخص فیزیولوژیک، عملکردی یا شناختی مرتبط با مسابقه فوتبال را اندازه‌گیری کرده باشند.

شامل یکی از انواع طراحی‌های زیر باشند: کارآزمایی‌های تصادفی‌سازی شده (Parallel / Crossover)، مطالعات تجربی مداخله‌ای، مطالعات مشاهداتی با داده‌های کمی مرتبط با الگوی مصرف CHO در فوتبالیست‌ها. پایان‌نامه‌ها و مطالعات میدانی با داده‌های کمی معتبر نیز با هدف تقویت بدن شواهد وارد شدند (۱۶، ۱۷).

استثناهای مطالعات غیرانسانی، مقالات صرفاً نظری، یا آن‌هایی که صرفاً پروتکل توصیفی بدون داده عملکردی ارائه کرده‌اند کنار گذاشته شدند. پایان‌نامه‌ها و مطالعات میدانی با داده‌های کمی مناسب (۱۶، ۱۷) به عنوان شواهد تکمیلی درج شدند.

فرآیند گزینش: هر مطالعه بر مبنای سطح طراحی و کیفیت گزارش‌دهی (بهویژه کنترل تغذیه پیش‌آزمون، کورسازی، نمونه‌گیری بیوشیمیایی) ارزیابی شد و در تحلیل‌های موضوعی وزن‌دهی توصیفی شد (شواهد قوی‌تر = چندین RCT همگرا با نتایج مشابه؛ شواهد ضعیفتر = مطالعه موردنی یا مطالعات با جامعه آماری بسیار کم یا طراحی غیرراندومایزد).

جدول ۱ عنوان، نویسندها و سال انتشار مقالات بررسی شده را نشان می‌دهد.

سال	عنوان	نویسندها
۲۰۱۵	تأثیرات مکمل کربوهیدرات و کافئین به صورت جداگانه یا ترکیبی، بین ۲ جلسه تمرین روزانه بر عملکرد فوتبال	Victor Amorim Andrade-Souza, Rômulo Bertuzzi, Gustavo Gomes de Araujo, David John Bishop, Adriano Eduardo Lima-Silva
۲۰۱۵	اثرات فیزیولوژیکی و عملکردی ژل‌های کربوهیدراتی مصرف شده قبل از دوره اضافه کاری یک بازی فوتبال شبیه‌سازی شده طولانی مدت بازی به بازی	Liam D. Harper, Marc A. Briggs, Ged McNamee, Daniel J. West, Liam P. Kilduff, Emma Stevenson, Mark Russell
۲۰۱۷	میزان مصرف و مصرف انرژی بازیکنان حرفه‌ای فوتبال انگلیس لیگ برتر؛ شواهدی از دوره‌بندی کربوهیدرات	Robert J. Patrick Orme, Liam Anderson, Jordan Graeme L. Close, Naughton Andy O'Boyle, David Rydings Milsom

Julien Louis .Rocco Di Michele John R. Speakman .Catherine Hambley James P. .Barry Drust .Ryland Morgans Morton		
Liam D. Harper, Emma J. Stevenson, Ian Rollo, Mark Russell	از زیابی اثرات فیزیولوژیکی و عملکردی یک نوشیدنی حاوی ۱۲٪ کربوهیدرات-الکتروولیت که در زمان‌های عمالاً قابل اجرا (یعنی قبل از هر نیمه) در طول مسابقه فوتبال شبیه‌سازی شده	۲۰۱۷
Jordan D. Philpott, Chris Donnelly, Ian H. Walshe, Elizabeth E. MacKinley,: James Dick, Stuart D.R. Galloway, Kevin D. Tipton, Oliver C.	افروزن روغن ماهی به پروتئین وی، لوسین و کربوهیدرات در طول یک دوره مکمل شش هفته‌ای، درد عضلانی پس از تمرینات بروونگرا را در بازیکنان فوتبال رقابتی کاهش می‌دهد	۲۰۱۸
Jaison Lee Wynne	تأثیر وعده‌های غذایی پرکربوهیدرات در مقابل وعده‌های غذایی حاوی درشت مغذی‌های مختلف بر فیزیولوژی و عملکرد فوتبال	۲۰۱۹
Mojtaba Kaviani, Philip D. Chilibeck , Spencer Gall, Jennifer Jochim and Gordon A. Zello	تأثیر شکلات‌های ورزشی با شاخص گلیسمی پایین و بالا بر متابولیسم و عملکرد بازیکنان فوتبال تغیریحی	۲۰۲۰
Eliran Mizelman, Philip D. Chilibeck, Abdul Hanifi, Mojtaba Kaviani, Eric Brenna, Gordon A. Zello	یک رژیم غذایی با شاخص گلیسمی پایین، فیر بالا و مبتنی بر حبوبات پروفایل لیپیدی را بهبود می‌بخشد، اما بر عملکرد بازیکنان فوتبال تأثیری ندارد	۲۰۲۰
Wynne, J. L., Ehlert, A. M., & Wilson, P. B	تأثیر وعده‌های غذایی پرکربوهیدرات در مقابل وعده‌های غذایی حاوی درشت مغذی‌های مختلف بر فیزیولوژی و عملکرد فوتبال زنان	۲۰۲۱
Tarnowski, C.A., Rollo, I., Carter, J.M., Lizarraga-Dallo, M.A., Oliva, M.P., Clifford, T., James, L.J., & Randell, R.K	تعادل مایعات و مصرف کربوهیدرات بازیکنان زن نخبه فوتبال در طول تمرین و مسابقه	۲۰۲۲
Lewis A. Gough, Mark Faghy, Neil Clarke, Adam L. Kelly, Matthew Cole, Wee Lun Foo	هیچ اثر مستقل یا سینزیتیک دهان‌شویه کربوهیدرات-کافئین بر عملکرد سرعتی مکرر در طول مسابقه فوتبال شبیه‌سازی شده در بازیکنان فوتبال تغیریحی مرد وجود ندارد.	۲۰۲۲
Nehme, R., Branco, F.M.S., Vieira, P.F., Guimarães, A.V.C., Gomes, G.K., Teixeira, G.P., Rodrigues, P.H., de Castro Junior, L.M., Puga, G.M., Saunders, B., & de Oliveira, E.P	شستشوی دهان با کربوهیدرات به صورت تکی و متوالی، عملکرد تست ریکاوری متناظر یو-یو را در بازیکنان فوتبال بهبود نمی‌بخشد.	۲۰۲۲
Ki-Woong Noh, Jung-Hwan Oh, Sok Park	تأثیر زمان مصرف کربوهیدرات بر متابولیسم و عملکرد بازیکنان فوتبال	۲۰۲۳
Abdolreza Kazemi, Ghazi Racil, Amir Hossein Ahmadi Hekmatikar, Mohadeseh Behnam Moghadam, Parisa Karami & Menno Henselmans	بهبود عملکرد فیزیکی بازیکنان نخبه فوتبال بر اساس نتایج GPS پس از ۴ روز مصرف کربوهیدرات و به دنبال آن ۳ روز رژیم غذایی کم کربوهیدرات	۲۰۲۳

Fahad Nadeem, Syed Zia-Ul-Islam, Muhammad Alamgir	تأثیر تمرین SAQ با و بدون مکمل کربوهیدرات بر سرعت فوتبالیست‌های نخبه	۲۰۲۳
McHaffie, S.J.; Langan-Evans, C.; Strauss, J.A.; Areta, J.L.; Rosimus, C.; Evans, M.; Waghorn, R.; Morton, J.P.	کمبود سوخت برای کار مورد نیاز؟ ارزیابی رژیم غذایی و بار بدنسازیکنان فوتبال دختر نوجوان در طول یک تمرین فشرده بین‌المللی و برنامه بازی	۲۰۲۳
Bahar Mazman .Meral Küçük Yetgin	تأثیر دهانشویه کربوهیدراتی بر عملکرد استقامتی بازیکنان فوتبال	۲۰۲۴
Fahad Nadeem, Muhammad Sajjad Ali Gill, Hafiz Mubbashar Riaz, Minahil Maqsood	تأثیر تمرین SAQ با و بدون مکمل کربوهیدرات در فوتبالیست‌های نخبه	۲۰۲۴
Yusuf Soylu, Paweł Chmura, Ersan Arslan, Bulent Kilit	اثرات دهانشویه کربوهیدراتی بر پاسخ‌های روان فیزیولوژیکی و نیمرخ‌های سینماتیکی در بازی‌های متنابع و مداوم در زمین‌های کوچک در نوجوانان بازیکنان فوتبال: یک کارآزمایی تصادفی، دوسوکور، کنترل شده با دارونما و متقاطع	۲۰۲۴
Mustafa Şahin, Erşan Arslan, Yusuf Soylu	تأثیر دهانشویه کربوهیدراتی بر عملکرد بازیکنان جوان فوتبال در زمین‌های کوچک: مقایسه بین زمین‌های کوچک و بزرگ	۲۰۲۵
Marta Tomljanovic, Ana Kezic, Mario Tomljanovic, Daniela Čačić Kenjerić	دانش تغذیه ورزشی و مصرف کربوهیدرات در بازیکنان جوان فوتبال مرد نخبه: بینش‌هایی از مطالعه موردی HNK آکادمی هایدوک	۲۰۲۵
Yakup Zühtü Birinci, Serkan Pancar, Yusuf Soylu	مقایسه اثرات حاد دهانشویه کربوهیدراتی و تشویق مری بر نیمرخ‌های سینماتیکی در طول بازی‌های در ابعاد کوچک در بازیکنان فوتبال مرد جوان	۲۰۲۵
سارا عارف‌حسینی - مینا آرامی نژاد - هلدا توتوچی - مهرانگیز ابراهیمی ممقانی	آیا امتیاز رژیم غذایی کم کربوهیدرات با ترکیب بدن و ظرفیت عملکردی در بازیکنان فوتبال بزرگسال نیمه حرفه‌ای مرتبط است؟	۲۰۲۵
Panagiotis G. Miliotis, Spyridoula D. Ntalapera, Dimitrios C. Stergiopoulos: Athanasios C. Zavvos, Panagiota Klentrou, Ifigeneia Giannopoulou, Nickos D. Geladas	تأثیر مصرف کربوهیدرات بر عملکرد و شاخص‌های خستگی در بازیکنان فوتبال نوجوان در طول یک بازی شبیه‌سازی شده	۲۰۲۵
Wouter M. Peeters, Daniel Baines, Nina K. Billotto, Paul Catterson, Dan Hodges, Mark Hearris, Andreas M. Kasper	تأثیر میزان‌های مختلف مصرف کربوهیدرات بر عملکرد فیزیکی، مهارتی و شناختی در طول فوتبال شبیه‌سازی شده طولانی مدت: یک کارآزمایی تصادفی کنترل شده	۲۰۲۵

جدول ۲ به صورت خلاصه، مهم‌ترین محدودیت‌های روش‌شناختی و اجرایی مطالعات بررسی شده را نشان می‌دهد که می‌توانند بر تفسیر و تعمیم نتایج تأثیرگذار باشند.

ردیف	محدودیت	شرح
۱	ناهمگونی پروتکل‌ها (Heterogeneity)	وجود تفاوت‌های گستردگی در دوز، نوع فرم کربوهیدرات (مالتودکستربن، گلوکز، دکستروز، بارهای-Low GI، ژل)، زمان بندی مصرف (پیش‌مسابقه، نیمه‌وقت، CHO-MR سریالی) و حالت تغذیه‌ای (fed vs fasted) موجب افزایش هیتروزنیتی و عدم امکان انجام تجمیع کمی معتبر می‌شود.
۲	کیفیت متغیر مطالعات	بسیاری از RCT‌ها حجم نمونه بسیار کوچک (<20 نفر) دارند یا به جای مسابقات واقعی از پروتکل‌های شبیه‌سازی شده آزمایشگاهی استفاده کرده‌اند که اعتبار خارجی را کاهش می‌دهد.
۳	فقدان شاخص‌های بیوشیمیایی یا بیوپسی	اندازه‌گیری مستقیم گلیکوژن عضلانی یا مجموعه کامل نشانگرهای بیوشیمیایی در اغلب مطالعات انجام نشده و مکانیزم‌های پیشنهادی عمده‌است نسبتاً استنباطی هستند.
۴	جانبداری جنسیتی و سنی	تمرکز بخش عمده مطالعات بر مردان بزرگسال، و کمیود پژوهش روی زنان و نوجوانان سبب محدودیت در تعمیم نتایج و احتمال سوگیری می‌شود.
۵	ریسک خطاهای گزارش‌دهی در مطالعات مشاهده‌ای	پژوهش‌هایی که دریافت روزمره کربوهیدرات را با ابزارهایی مانند FFQ یا رکورد غذایی ارزیابی کرده‌اند، در معرض سوگیری یادآوری و گزارش‌دهی نادرست هستند.

یافته‌ها

در این بخش یافته‌های پژوهش در سه جدول همراه با تبیین ارایه می‌گردد.

جدول ۳ مکانیزم‌های اثر کربوهیدرات و عوامل تعديل‌کننده پاسخ

حوزه مکانیسمی	شرح مکانیسم	عوامل تعديل کننده	منابع
تأمین و حفظ گلوکز خون	افزایش دسترسی به گلوکز و جلوگیری از افت قند خون	حالات تغذیه (Fed vs Fasted)، شدت بازی	(۹، ۱۲، ۱۸، ۱۲)
حفظ ذخایر گلیکوژن عضلانی	جلوگیری از تخلیه سریع گلیکوژن و حفظ توان در شدت‌های بالا	سطح تمرین، بار تمرینی	(۱۲، ۱۸)
تنظیم اکسیداسیون سوخت	کاهش \rightarrow RER صرفه‌جویی در گلیکوژن و افزایش استفاده از چربی	نوع CHO، زمان بندی	(۹، ۱۹)
تأثیرات عصبی-مرکزی (CHO-MR)	تحریک گیرندهای دهانی و مدارهای فعال‌سازی پاداش/حرکتی \rightarrow کاهش ادراف تلاش	Fed/Fasted، ساختار تمرین و مسابقه	(۵، ۹، ۲۰)

جدول ۳ مجموعه‌ای از مهم‌ترین مکانیزم‌های فیزیولوژیکی و عصبی-مرکزی را که از طریق آن‌ها کربوهیدرات می‌تواند بر عملکرد فوتبالیست‌ها تأثیر بگذارد، خلاصه می‌کند. این مکانیزم‌ها شامل حفظ غلظت گلوکز خون، پایداری ذخایر گلیکوژن عضلانی، بهینه‌سازی اکسیداسیون سوخت در طول فعالیت‌های شدید و نقش محرک‌های دهانی در پروتکل‌های CHO-MR هستند. علاوه بر این، جدول به عوامل تعديل‌کننده‌ای مانند

حالت تغذیه‌ای ورزشکار، نوع و زمان‌بندی مصرف کربوهیدرات و ساختار تمرین اشاره دارد که می‌توانند شدت یا دامنه پاسخ به مداخلات را تغییر دهند. مجموعه این داده‌ها نشان می‌دهد که تأثیر کربوهیدرات پویا و وابسته به شرایط فردی و تمرینی است، نه ثابت و یکنواخت.

جدول ۴ اثرات عملکردی، جمعیتی و متابولیکی ناشی از مصرف کربوهیدرات

حوزه اثر	یافته کلیدی	توضیح و دامنه اثر	منابع
حفظ عملکرد نیمه دوم	صرف HCHO پیش‌مسابقه + CHO ۶۰-۳۰ g در نیمه‌وقت	بهبود توان در دقایق پایانی، کاهش افت سرعت	(۱۲، ۲۱، ۲۲)
عملکرد مهارت‌های فنی	CHO-MR یا ژل قبل از وقت اضافه	حفظ دقت پاس/دریبل؛ اثر کمتر در افراد تغذیه‌شده	(۵، ۱۹، ۲۳)
اثرات متابولیک/سلامتی	رژیم Low-GI و حبوبات	بهبود پروفایل لیپیدی بهویژه در زنان	(۲۱، ۲۴)
کاهش خستگی و بازیابی	دوره‌بندی CHO (۳ روز کم → ۴ روز بارگیری → مسابقه)	کاهش هزینه متابولیکی، افزایش خروجی	(۱۸، ۲۵)
شاخص‌های قلبی تنفسی	اثرات ناهمگون بر $VO_{2\text{max}}$	بهبود محدود در مطالعات کوتاه‌مدت یا نمونه‌های کوچک	(۱۱، ۱۲، ۱۹)
تفاوت‌های جمعیتی	پاسخ وابسته به سطح ورزشکار و وضعیت تغذیه	غیرنخبه‌ها پاسخ‌دهی بیشتر؛ نخبگان نیازمند شخصی‌سازی	(۱۷، ۱۹، ۲۵، ۲۶)
جنسیت و سن	تفاوت‌های احتمالی متابولیک در نیازمند مطالعات بیشتر	نیازمند خصوصیات پاسخ‌دهنده اثرات خاص در نوجوانان زنان؛	(۸، ۱۶، ۲۴)

جدول ۴ یافته‌های اصلی مرتبط با اثرات عملی مصرف کربوهیدرات را بر عملکرد، مهارت، ریکاوری و شاخص‌های متابولیک در بازیکنان فوتبال نشان می‌دهد. این جدول بهویژه تأکید می‌کند که مصرف هدفمند کربوهیدرات می‌تواند از افت عملکرد در نیمه دوم جلوگیری کند، مهارت‌های فنی را در شرایط خستگی حفظ نماید و برخی شاخص‌های متابولیک (خصوصاً در زنان) را بهبود بخشد. تفاوت پاسخ در گروه‌های مختلف سنی و جنسی و نیز نقش سطح تمرینی و وضعیت تغذیه پایه در پاسخ‌دهی به مداخله نیز در این جدول منعکس شده است. داده‌ها نشان می‌دهند که بیشترین سود معمولاً در بازیکنان غیرنخبه یا افرادی با مصرف روزانه پایین کربوهیدرات دیده می‌شود، در حالی که بازیکنان نخبه اغلب نیاز به رویکردهای فردی‌سازی شده دارند.

جدول ۵ پروتکلهای مصرف کربوهیدرات: دوز، زمان‌بندی و ملاحظات عملی

نوع پروتکل	جزئیات عملی	میزان مصرف/دوز	ملاحظات و نکات کاربردی	منابع
وعده پیش‌مسابقه	صرف بازی ۴-۲ ساعت قبل	$200-150 \text{ g} \cdot \text{kg}^{-1}$ CHO در یک وعده	مؤثر در افزایش ذخایر گلیکوژن	(۱۶، ۲۷)
درون‌بازی / نیمه‌وقت	ژل یا نوشیدنی CHO	۳۰-۶۰ g در نیمه‌وقت / $30+30 \text{ kcal}$	بهبود عملکرد نیمه دوم پروتکل تقسیم‌شده	(۱۲، ۲۲)
صرف در هر ساعت	نوشیدنی یا ژل CHO	$30-82 \text{ g} \cdot \text{h}^{-1}$	افزایش جذب، کاهش	(۱۷، ۱۹)

بازی		ناراحتی گوارشی	(مالتودکستربین+فروکتوز ۲:۱ برای مقادیر بالا)	
CHO-Mouth Rinse	(۵،۹،۲۰)	مؤثر در Fasted ؛ اثر Fed کمتر در	تکرار در شروع نیمه‌ها یا قبل از دوره‌های فشار	۵۰-۲۵ ml محلول ۶-۱۰٪ ۱۰-۵ ثانیه شستشو
دوره‌بندی کربوهیدراتات (Periodization)	(۱۸،۲۵)	افزایش آمادگی و کاهش هزینه متابولیک	$1.5 \text{ g} \cdot \text{kg}^{-1}$ (کم)، ۷.۵-۶.۵ (بارگیری)، روز مسابقه	الگوی کم → بارگیری → مسابقه
ملاحظات ایمنی	(۲۱)	دوزهای بالا ممکن است ایجاد GI distress کنند	$1.5 \text{ g} \cdot \text{kg}^{-1}$ CHO در یک وعده ۲۰۰ kcal ۱۰۰	تحمل گوارشی وابسته به دوز

جدول ۵ یک نمای عملی و کاربردی از رایج‌ترین پروتکل‌های مصرف کربوهیدرات در فوتبال ارائه می‌دهد. این جدول نه تنها دوزها و زمان‌بندی دقیق مصرف (پیش‌مسابقه، حین بازی، نیمه‌وقت، و دوره‌بندی تمرینی) را نمایش می‌دهد، بلکه ملاحظات اجرایی مهم مانند تحمل گوارشی، نقش ترکیب قندی (مانند نسبت ۲:۱ مالتودکستربین به فروکتوز)، اثربخشی CHO-MR و نیاز به نظارت کالری و ماکرونوترینتها در دوره‌بندی کربوهیدراتات را نیز تشریح می‌کند. این اطلاعات به مریبان، مخصوصان تغذیه ورزشی و پژوهشگران امکان می‌دهد پروتکل‌های متناسب با هدف، شرایط بدنی، سطح عملکرد و نیازهای فردی ورزشکار را طراحی کنند.

بحث و نتیجه‌گیری

جمع‌بندی شواهد موجود نشان می‌دهد که مداخلات مبتنی بر کربوهیدرات (CHO) می‌توانند به عنوان یک راهبرد چندوجهی تغذیه‌ای، تاب‌آوری، عملکرد فنی و توانایی حفظ اجرای مسابقه را در فوتبال بهبود بخشنند. وعده‌های پرکربوهیدرات پیش‌مسابقه، مصرف هدفمند کربوهیدرات در حین بازی، استفاده از شستشو شوی دهانی (CHO-MR)، و رویکردهای دوره‌بندی CHO از جمله مداخلاتی هستند که در شرایط مناسب می‌توانند اثرات سودمند ایجاد کنند. با این حال، میزان و احتمال این اثرات به طور معناداری به نوع مداخله، وضعیت تغذیه‌ای پایه، ساختار فعالیت (بازی) کامل در برابر SSG و حالت تغذیه‌ای بازیکن (fed-fasted) وابسته است (۲۸، ۱۹، ۲۱، ۱۸، ۱۷، ۱۶، ۱۲، ۹).

مطالعات با طراحی دقیق‌تر - بهویژه پژوهش‌هایی که تغذیه پیش‌آزمون را استاندارد سازی کرده یا دوره‌بندی CHO را در بازیکنان حرفه‌ای به کار برده‌اند - قابل اعتمادترین شواهد را فراهم کرده‌اند و گزارش‌دهنده بهبود تاب‌آوری و حفظ برخی شاخص‌های عملکردی بوده‌اند. در مقابل، اثربخشی CHO-MR ناهمگون است؛ آثار مثبت این روش عمدتاً در شرایط نیمه‌ناشناختی یا پروتکل‌های full-pitch مشاهده شده و در مقابل، در حالت تغذیه‌شده یا در الگوهای پیچیده و تناوبی فوتبال، اثر مشخصی گزارش نشده است (۹، ۲۰، ۱۲، ۱۷، ۱۸، ۱۹، ۲۱، ۲۸).

از منظر مکانیسمی، سه مسیر اصلی برای اثر CHO پیشنهاد شده است: (۱) حفظ گلیکوژن عضلانی و تأمین سریع گلوکز در فعالیت‌های طولانی یا تکرارشونده؛ (۲) بهبود الگوی اکسیداسیون سوخت‌ها در صورت زمان‌بندی بهینه؛ (۱۲) و (۳) اثرات ارگونومیک مرکزی ناشی از تحریک گیرنده‌های دهانی. با این حال، به دلیل محدودیت اندازه‌گیری‌های مستقیم متابولیک در بخش قابل توجهی از پژوهش‌ها، قطعیت مکانیسمی همچنان محدود است (۹، ۲۰).

تحلیل جمعیت‌شناختی شواهد نشان می‌دهد که بازیکنانی با دریافت پایه ناکافی CHO و همچنین بازیکنان غیرنخبه بیشترین سود را از این مداخلات کسب می‌کنند (۲۵، ۲۶). در مقابل، بازیکنان نخبه با وضعیت تغذیه‌ای مطلوب، معمولاً پاسخ ضعیف‌تری به دوزهای بالای CHO درون‌بازی نشان می‌دهند و بیشتر از رویکردهای دوره‌بندی و فردی‌سازی مصرف بهره‌مند می‌شوند (۱۷، ۱۸، ۱۹). همچنین، شواهد مقدماتی حاکی از احتمال تفاوت‌های جنسیتی در پاسخ‌های متابولیک به برخی منابع CHO کم‌بار گلیسمی است (۲۶)، اگرچه برای نتیجه‌گیری قطعی به کارآزمایی‌های بزرگ‌تر نیاز است.

یافته‌های مطالعات نشان می‌دهد که چند رویکرد عملی برای به کارگیری کربوهیدرات در فوتبال بیشترین پشتونه پژوهشی را دارند:

۱. وعده پیش‌مسابقه پرکربوهیدرات شامل مصرف ۱ تا ۵/۱ گرم کربوهیدرات به ازای هر کیلوگرم وزن بدن) یا حدود ۲۰۰ گرم CHO معادل تقریباً ۱۰۰۰ کیلوکالری (طی ۲ تا ۴ ساعت پیش از مسابقه، در اغلب مطالعات به عنوان راهبردی مؤثر برای تضمین دسترسی سوختی مناسب معرفی شده است(16)..(27)

۲. مصرف هدفمند کربوهیدرات در نیمه‌وقت به میزان ۳۰ تا ۶۰ گرم یا استفاده از پروتکل تقسیم دوز (۳۰ گرم پیش از شروع + ۳۰ گرم بین دو نیمه) در مسابقات ۹۰ دقیقه‌ای، به‌طور مکرر با کاهش افت عملکرد در نیمه دوم همراه گزارش شده است(12)..(22)

۳. مصرف مقادیر بالاتر کربوهیدرات درون بازی (تا حدود ۸۲ گرم در ساعت، غالباً با فرمولاسیون مالتودکستربن-فروکتوز) در ورزشکارانی که از نظر تغذیه‌ای پیش از مسابقه به خوبی تأمین شده‌اند، بهبود عملکرد معناداری نشان نداده است؛ با این حال، این مقادیر معمولاً با تحمل پذیری گوارشی مناسب همراه بوده‌اند.(19)

۴. شست‌وشوی دهانی کربوهیدرات (CHO-MR) با حجم ۲۵ تا ۵۰ میلی‌لیتر محلول ۴/۶٪ تا ۱۰٪ و زمان تماس ۵ تا ۱۰ ثانیه، می‌تواند در شرایط خاص—به‌ویژه هنگامی که بلع مایعات دشوار است یا بازیکن در حالت نیمه‌ناشتا قرار دارد—اثرات ارگونومیک نشان دهد؛ اما شواهد حاکی از آن است که این روش در حالت تغذیه‌شده (fed) اثر قابل توجهی ندارد(5)،(9)..(20)

با وجود انجام چند کارآزمایی تصادفی شده و کنترل شده با طراحی قوی (۱۸،۱۹،۲۰)، بخش قابل توجهی از ادبیات پژوهشی مبتنی بر نمونه‌های کوچک، شرایط شبیه‌سازی شده، یا گزارش‌دهی ناکامل است (۱۱،۱۲،۲۳،۲۸). به‌همین دلیل، کیفیت کلی شواهد در بسیاری از حوزه‌ها از «متوسط» تا «ضعیف» طبقه‌بندی می‌شود

تنها در برخی پرسش‌های کاربردی – از جمله اثربخشی دوره‌بندی کربوهیدرات در بازیکنان حرفه‌ای و تأثیر مصرف ژل کربوهیدراتی در نیمه‌وقت بر کاهش افت عملکرد – تجمع شواهد رویکردی هم‌سو و نسبتاً قوی‌تر را ارائه می‌کند (۱۲،۱۸،۲۲). با این حال، نیاز به مطالعات میدانی بزرگ‌تر، کنترل تغذیه‌پیش‌آزمون، و به کارگیری شاخص‌های بیوشیمیایی دقیق برای افزایش سطح قطعیت در این حوزه‌ها همچنان محسوس است.

با وجود هم‌جهتی نسبی یافته‌ها در حمایت از نقش CHO در کاهش افت عملکرد نیمه دوم – به‌ویژه زمانی که دسترسی پیش‌مسابقه به CHO ناکافی بود یا مسابقات طولانی/ متواال هستند (۱۸،۲۲،۲۳). ناهمگونی قابل توجهی در پروتکل‌ها، فرم‌های دریافت و حالت تغذیه‌ای شرکت‌کنندگان وجود دارد (۵،۹،۱۹). بسیاری از مطالعات نیز با حجم نمونه کوچک، توان آماری محدود و فقدان ارزیابی‌های بیوشیمیایی رو به رو هستند؛ از این رو سطح اطمینان کلی شواهد «متوسط» ارزیابی می‌شود (۱۱،۱۲،۲۸).

از دیدگاه کاربردی، مصرف ۱ تا ۵/۱ گرم کربوهیدرات به ازای هر کیلوگرم وزن بدن) یا حدود ۲۰۰ گرم (CHO طی ۴-۲ ساعت پیش از مسابقه و همچنین مصرف ۶۰-۳۰ گرم CHO بین دو نیمه، راهبردهایی عملی و شواهد-محور برای حفظ عملکرد نیمه دوم محسوب می‌شوند. CHO-MR می‌تواند در شرایطی که بلع مایعات دشوار است مفید باشد، هرچند اثر آن معمولاً کمتر از مصرف واقعی CHO است. در بازیکنان نخبه، رویکردهای دوره‌بندی CHO زمانی مؤثرتر هستند که با نظارت متخصص تغذیه ورزشی اجرا شوند.

به‌طور کلی، راهبردهای کربوهیدراتی including—بارگذاری پیش‌مسابقه، مصرف هدفمند درون بازی و دوره‌بندی تغذیه—می‌توانند در بهبود تاب‌آوری و برخی مؤلفه‌های عملکردی بازیکنان فوتبال، بهویژه در شرایط کمبود دریافت CHO یا فشارهای مسابقاتی طولانی/پشت‌سرهم، سودمند باشند (۱۲،۱۷،۱۸،۲۲). با این حال، با توجه به محدودیت‌های روش‌شناختی و ناهمگونی پروتکل‌ها، تدوین توصیه‌های دقیق باید بر پایه فردی‌سازی و تحت نظارت تیم‌های تغذیه و پزشکی انجام پذیرد.

ملاحظات اخلاقی

در اجرای پژوهش ملاحظات اخلاقی مطابق با دستورالعمل کمیته اخلاق دانشگاه در نظر گرفته شده است.

حامي/حاميان مالي

این مقاله هیچ گونه کمک مالی از سازمان تامین کننده مالی در بخش‌های عمومی و دولتی، تجاری، غیرانتفاعی دانشگاه یا مرکز تحقیقات دریافت نکرده است.

مشارکت نویسنده‌گان

تمام نویسنده‌گان در آماده سازی مقاله مشارکت یکسان داشته‌اند.

تعارض منافع

بنابر اظهار نویسنده‌گان، این مقاله تعارض منافع ندارد.

تشکر و قدردانی

بدینوسیله از زحمات اساتیدی که در انجام این مطالعه کمال همکاری را داشته‌اند، سپاسگزاری می‌گردد.

References

1. Ahmad, N.S., et al., A Systematic Review of Nutritional Ergogenic Aids on Physiological Responses and Skilled Performance among Football Players. *Annals of Applied Sport Science*, 2025. 13(2): p. 0-0. <https://dx.doi.org/10.6118/aassjournal.1458>
2. Molina-López, A., et al., Effects of a Specific Supplementation on the Recovery of the Professional Football Player. *International Journal of Morphology*, 2025. 43(3). https://www.scielo.cl/scielo.php?pid=S0717-95022025000300954&script=sci_arttext
3. Hopper, C., E. Mooney, and A. Mc Cloat, Nutritional intake and dietary knowledge of athletes: A scoping review. *Nutrients*, 2025. 17(2): p. 207. <https://doi.org/10.3390/nu17020207>
4. Książek, A., A. Zagrodna, and M. Ślowińska-Lisowska, Assessment of the dietary intake of high-rank professional male football players during a preseason training week. *International journal of environmental research and public health*, 2020. 17(22): p. 8567. <http://dx.doi.org/10.3390/ijerph17228567>
5. Gough, L.A., et al., No independent or synergistic effects of carbohydrate-caffeine mouth rinse on repeated sprint performance during simulated soccer match play in male recreational soccer players. *Science and Medicine in Football*, 2022. 6(4): p. 519-527. <https://doi.org/10.1080/24733938.2021.2021277>
6. Pueyo, M., et al., Influence of Carbohydrate Intake on Different Parameters of Soccer Players' Performance: Systematic Review. *Nutrients*, 2024. 16(21): p. 3731. <https://doi.org/10.3390/nu16213731>
7. Tarnowski, C.A., et al., Fluid balance and carbohydrate intake of elite female soccer players during training and competition. *Nutrients*, 2022. 14(15): p. 3188. <https://doi.org/10.3390/nu14153188>
8. Miliotis, P.G., et al., The Effect of Carbohydrate Ingestion on Performance and Indices of Fatigue in Adolescent Soccer Players During a Simulated Game. *Sports*, 2025. 13(6): p. 192. <https://doi.org/10.3390/sports13060192>
9. Şahin, M., E. Arslan, and Y. Soylu, Effects of carbohydrate mouth rinse on performances of small-sided games in young male soccer players: A comparison between small and large pitch sizes. *Turkish Journal of Kinesiology*, 2025. 11(4): p. 198-205. <https://doi.org/10.31459/turjkjin.1689944>
10. Park, H.-Y., et al., The effect of additional carbohydrate supplements for 7 days after prolonged interval exercise on exercise performance and energy metabolism during submaximal exercise in team-sports athletes. *Journal of Exercise Nutrition & Biochemistry*, 2018. 22(1): p. 29. <http://dx.doi.org/10.20463/jenb.2018.0005>
11. Mazman, B. and M.K. Yetgin, The Effect of Carbohydrate Mouth Rinse on the Endurance Performance in Football Players. *CBÜ Beden Eğitimi ve Spor Bilimleri Dergisi*, 2024. 19(2): p. 95-108. <https://doi.org/10.33459/cbubesbd.1399602>
12. Noh, K.-W., J.-H. Oh, and S. Park, Effects of the timing of carbohydrate intake on metabolism and performance in soccer players. *Nutrients*, 2023. 15(16): p. 3610. <https://doi.org/10.3390/nu15163610>
13. Soylu, Y., et al., The Effects of Carbohydrate Mouth Rinse on Psychophysiological Responses and Kinematic Profiles in Intermittent and Continuous Small-Sided Games in Adolescent Soccer Players: A Randomized, Double-Blinded, Placebo-Controlled, and Crossover Trial. *Nutrients*, 2024. 16(22): p. 3910. <https://doi.org/10.3390/nu16223910>
14. Arefhosseini, S., et al., Is low-carbohydrate diet score associated with body composition and functional capacity in semi-professional adult soccer players? *BMC Research Notes*, 2025. 18(1): p. 279. <https://doi.org/10.1186/s13104-025-07347-4>
15. Rollo, I. and C. Williams, Carbohydrate nutrition and skill performance in soccer. *Sports Medicine*, 2023. 53(Suppl 1): p. 7-14. <https://doi.org/10.1007/s40279-023-01876-3>
16. Wynne, J.L., Effects of High-Carbohydrate Versus Mixed-Macronutrient Meals on Soccer Physiology and Performance. 2019, Old Dominion University.

https://digitalcommons.odu.edu/hms_etds/42?utm_source=digitalcommons.odu.edu%2Fhms_etds%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages

17. Anderson, L., et al., Energy intake and expenditure of professional soccer players of the English Premier League: evidence of carbohydrate periodization. *International journal of sport nutrition and exercise metabolism*, 2017. 27(3): p. 228-238. <https://doi.org/10.1123/ijsnem.2016-0259>
18. Kazemi, A., et al., Improved physical performance of elite soccer players based on GPS results after 4 days of carbohydrate loading followed by 3 days of low carbohydrate diet. *Journal of the International Society of Sports Nutrition*, 2023. 20(1): p. 2258837. <https://doi.org/10.1080/15502783.2023.2258837>
19. Peeters, W.M., et al., The effect of different carbohydrate ingestion rates on physical, skill and cognitive performance during extended simulated soccer: a randomized controlled trial. *Performance Nutrition*, 2025. 1(1): p. 12. <https://doi.org/10.1186/s44410-025-00015-5>
20. Nehme, R., et al., Single and serial carbohydrate mouth rinsing do not improve yo-yo intermittent recovery test performance in soccer players. *International journal of sport nutrition and exercise metabolism*, 2021. 32(1): p. 22-29. <https://doi.org/10.1123/ijsnem.2021-0174>
21. Kaviani, M., et al., The effects of low-and high-glycemic index sport nutrition bars on metabolism and performance in recreational soccer players. *Nutrients*, 2020. 12(4): p. 982. <http://dx.doi.org/10.3390/nu12040982>
22. Harper, L.D., et al., The influence of a 12% carbohydrate-electrolyte beverage on self-paced soccer-specific exercise performance. *Journal of science and medicine in sport*, 2017. 20(12): p. 1123-1129. <http://dx.doi.org/10.1016/j.jsams.2017.04.015>
23. Harper, L.D., et al., Physiological and performance effects of carbohydrate gels consumed prior to the extra-time period of prolonged simulated soccer match-play. *Journal of science and medicine in sport*, 2016. 19(6): p. 509-514. <http://dx.doi.org/10.1016/j.jsams.2015.06.009>
24. Mizelman, E., et al., A low-glycemic index, high-fiber, pulse-based diet improves lipid profile, but does not affect performance in soccer players. *Nutrients*, 2020. 12(5): p. 1324. <http://dx.doi.org/10.3390/nu12051324>
25. McHaffie, S.J., et al., Under-fuelling for the work required? Assessment of dietary practices and physical loading of adolescent female soccer players during an intensive international training and game schedule. *Nutrients*, 2023. 15(21): p. 4508. <https://doi.org/10.3390/nu15214508>
26. Tomljanovic, M., et al., Sports Nutrition Knowledge and Carbohydrate Intake in Young Male Elite Football Players: Insights from a Case Study of HNK Hajduk Academy. *Journal of functional morphology and kinesiology*, 2025. 10(2): p. 169. <https://doi.org/10.3390/jfmk10020169>
27. Wynne, J.L., A.M. Ehlert, and P.B. Wilson, Effects of high-carbohydrate versus mixed-macronutrient meals on female soccer physiology and performance. *European Journal of Applied Physiology*, 2021. 121(4): p. 1125-1134. <https://doi.org/10.1007/s00421-021-04597-5>
28. Nadeem, F., et al., Effect of SAQ Training With and Without Carbohydrate Supplementation in Elite Footballers. *Human Nature Journal of Social Sciences*, 2024. 5(3): p. 18-35. <https://doi.org/10.71016/hnjss/4wsbys14>

1.